Suppr超能文献

用于可视化和分析的神经生长锥丝状伪足动力学的计算机模拟。

Computer simulation of nerve growth cone filopodial dynamics for visualization and analysis.

作者信息

Buettner H M

机构信息

Department of Chemical and Biochemical Engineering, Rutgers University, Piscataway, NJ 08855, USA.

出版信息

Cell Motil Cytoskeleton. 1995;32(3):187-204. doi: 10.1002/cm.970320304.

Abstract

The neuronal growth cone plays a fundamental role in nerve development and regeneration. A sensory-motile structure, it determines the path of axonal extension through its interactions with the extracellular environment, ultimately directing the formation of functional connections in the nervous system. Though several mechanisms of interaction have been proposed, these have been difficult to describe quantitatively due to the complexity of growth cone behavior, as manifested in the randomly and rapidly changing shape of the growth cone. The application of mathematical techniques to model growth cone shape and motility in terms of underlying processes represents a promising approach with untapped potential for helping to unravel this complexity while revealing new insights into axonal pathfinding events. This paper presents a simulation model for filopodial dynamics, a primary feature of the motile growth cone. The model produces realizations of dynamic filopodial structure on representative growth cones for a given set of model parameters, which include the rates of filopodial initiation, extension, and retraction, filopodial length at maximum extension, and angular orientation. These parameters are based on recent experimental characterization of filopodial dynamics [Buettner et al., 1994: Dev. Biol. 163:407-422]. The mathematical relationship between the model parameters and average filopodial number and length per growth cone is described, and the contribution of individual parameters to overall filopodial morphology is illustrated both visually and numerically. In addition, the model is used to simulate filopodial encounter with a target for various conditions of filopodial dynamics. The result is characterized in terms of a mean encounter time for a population of growth cones and provides an indication of the effect of individual parameters of filopodial dynamics on the encounter process. Future experimental testing will be required to develop the model further. However, in its current form, the model enables a first approximation analysis of many hypothesis of growth cone migration and pathfinding and offers insight into the the underlying mechanisms of nerve growth and regeneration.

摘要

神经元生长锥在神经发育和再生中起着基础性作用。作为一种感觉运动结构,它通过与细胞外环境的相互作用来决定轴突延伸的路径,最终指导神经系统中功能连接的形成。尽管已经提出了几种相互作用机制,但由于生长锥行为的复杂性,这些机制难以进行定量描述,生长锥行为的复杂性表现为其形状随机且快速变化。应用数学技术根据潜在过程对生长锥形状和运动性进行建模,是一种有前途的方法,具有尚未开发的潜力,有助于揭示这种复杂性,同时揭示轴突路径寻找事件的新见解。本文提出了一种丝状伪足动力学的模拟模型,丝状伪足是运动性生长锥的一个主要特征。该模型针对给定的一组模型参数,在代表性生长锥上生成动态丝状伪足结构的实现,这些参数包括丝状伪足起始、延伸和回缩的速率、最大延伸时的丝状伪足长度以及角度取向。这些参数基于最近对丝状伪足动力学的实验表征[布特纳等人,1994年:《发育生物学》163:407 - 422]。描述了模型参数与每个生长锥的平均丝状伪足数量和长度之间的数学关系,并通过视觉和数值方式说明了各个参数对整体丝状伪足形态的贡献。此外,该模型用于模拟在丝状伪足动力学的各种条件下丝状伪足与目标的相遇。结果以一群生长锥的平均相遇时间来表征,并表明丝状伪足动力学的各个参数对相遇过程的影响。需要未来的实验测试来进一步完善该模型。然而,就其目前的形式而言,该模型能够对生长锥迁移和路径寻找的许多假设进行初步近似分析,并深入了解神经生长和再生的潜在机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验