Suppr超能文献

谷氨酸受体激动剂可调节离体大鼠促黑素细胞中的[Ca2+]i。

Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes.

作者信息

Giovannucci D R, Stuenkel E L

机构信息

Department of Physiology, University of Michigan Medical School, Ann Arbor 48109, USA.

出版信息

Neuroendocrinology. 1995 Aug;62(2):111-22. doi: 10.1159/000126995.

Abstract

Although glutamate is the predominant excitatory amino acid in the vertebrate central nervous system (CNS) where it affects a variety of physiological processes and pathophysiological states, the role that glutamate receptors may play outside the CNS has not been clearly established. In the present study, the effects of N-methyl-D-aspartate (NMDA), alpha-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) kainate, and metabotropic glutamate receptor agonists and antagonists were investigated on neuroendocrine melanotropes of the rat pars intermedia using single-cell dual-wavelength microfluorometry and the Ca(2+)-sensitive probe, fura-2, to monitor changes in [Ca2+]i. Glutamate induced a rapid, concentration-dependent rise in [Ca2+]i with an EC50 of 24 microM that was Mg(2+)-sensitive and dependent on the presence of extracellular Ca2+. NMDA increased [Ca2+]i in a glycine-dependent manner with an EC50 of 83 microM that was blocked by 1 microM MK-801 and 1 mM Mg2+. The non-NMDA receptor agonists kainate, AMPA, and quisqualate increased [Ca2+]i with an EC50 of 124, 5 and 8 microM, respectively. Responses to kainic acid were blocked by 10 microM CNQX and were shown to be sensitive to Mg2+ and dihydropyridine. AMPA stimulation was the most potent, and glutamate stimulation was the most efficacious at mediating increases in [Ca2+]i. The metabotropic receptor-specific agonist, trans-ACPD, failed to induce a change in [Ca2+]i. The glutamate-induced Ca2+ influx was about half of that elicited by a 50 mM K(+)-induced membrane depolarization and activation of voltage-sensitive Ca2+ channels. These results demonstrate the presence of glutamate receptors on rat melanotropes and suggest that glutamate receptors in the intermediate lobe of the pituitary may provide the excitatory counterbalance to the well-described secretoinhibiting input via dopamine and gamma-aminobutyric acid receptors.

摘要

尽管谷氨酸是脊椎动物中枢神经系统(CNS)中主要的兴奋性氨基酸,它在其中影响多种生理过程和病理生理状态,但谷氨酸受体在中枢神经系统之外可能发挥的作用尚未明确确立。在本研究中,使用单细胞双波长显微荧光测定法和Ca(2+)敏感探针fura-2来监测[Ca2+]i的变化,研究了N-甲基-D-天冬氨酸(NMDA)、α-氨基-2,3-二氢-5-甲基-3-氧代-4-异恶唑丙酸(AMPA)、海人藻酸以及代谢型谷氨酸受体激动剂和拮抗剂对大鼠中间部神经内分泌促黑素细胞的影响。谷氨酸诱导[Ca2+]i迅速、浓度依赖性升高,EC50为24μM,对Mg(2+)敏感且依赖于细胞外Ca2+的存在。NMDA以甘氨酸依赖性方式增加[Ca2+]i,EC50为83μM,被1μM MK-801和1 mM Mg2+阻断。非NMDA受体激动剂海人藻酸、AMPA和喹啉酸分别以124、5和8μM的EC50增加[Ca2+]i。对海人酸的反应被10μM CNQX阻断,并显示对Mg2+和二氢吡啶敏感。AMPA刺激最有效,谷氨酸刺激在介导[Ca2+]i增加方面最有效。代谢型受体特异性激动剂反式-ACPD未能诱导[Ca2+]i的变化。谷氨酸诱导的Ca2+内流约为50 mM K(+)诱导的膜去极化和电压敏感性Ca2+通道激活所引发内流的一半。这些结果证明大鼠促黑素细胞上存在谷氨酸受体,并表明垂体中间叶中的谷氨酸受体可能为通过多巴胺和γ-氨基丁酸受体的众所周知的分泌抑制输入提供兴奋性平衡。

相似文献

1
Glutamate receptor agonists modulate [Ca2+]i in isolated rat melanotropes.
Neuroendocrinology. 1995 Aug;62(2):111-22. doi: 10.1159/000126995.
4
Ca2+ influx through glutamate receptor-associated channels in retina cells correlates with neuronal cell death.
Eur J Pharmacol. 1996 Apr 29;302(1-3):153-62. doi: 10.1016/0014-2999(96)00044-1.
6
Ionotropic glutamate receptors mediate juvenile hormone synthesis in the cockroach, Diploptera punctata.
Insect Biochem Mol Biol. 2002 Jun;32(6):669-78. doi: 10.1016/s0965-1748(01)00146-1.
8
Developmental changes in glutamate receptor-activated translocation of protein kinase C in cerebellar granule neurons.
Brain Res Dev Brain Res. 1996 Jun 14;94(1):22-30. doi: 10.1016/0165-3806(96)00039-9.
9
Characterization of Ca2(+)-mobilizing excitatory amino acid receptors in cultured chick cortical cells.
Eur J Pharmacol. 1990 Oct 30;189(4-5):253-66. doi: 10.1016/0922-4106(90)90118-h.

引用本文的文献

1
Insect NMDA receptors mediate juvenile hormone biosynthesis.
Proc Natl Acad Sci U S A. 2002 Jan 8;99(1):37-42. doi: 10.1073/pnas.012318899. Epub 2002 Jan 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验