Songu-Mize E, Liu X, Stones J E, Hymel L J
Department of Pharmacology, Louisiana State University Medical Center, New Orleans 70112, USA.
Hypertension. 1996 Mar;27(3 Pt 2):827-32. doi: 10.1161/01.hyp.27.3.827.
We have previously demonstrated that vascular sodium pump activity is stimulated in several rat models of hypertension. In addition, others have reported an upregulation of mRNA for the Na+,K+-ATPase alpha1-subunit in hypertension. To test the effect of sustained, cyclic, stretch-relaxation stimuli on the expression of alpha1- and alpha2-subunits of Na+,K+-ATPase in vascular smooth muscle cells, we used the Flexercell strain unit to stretch rat aortic smooth muscle cells for several days on a collagen-coated silicone elastomer substratum. Six-second cycles of stretch-relaxation were applied to obtain 10% average surface elongation (22% maximum) for 4 days. Control cells were not stretched but were grown on a similar surface. The effect of Gd3+, a blocker of stretch-activated channels, was also investigated. At the end of 4 days, protein expression of alpha1- and alpha2-subunits was determined by Western blot analysis. Intensity of the bands for alpha1- and alpha2-subunits was quantified with the use of a computerized image analyzer. In the stretched cells, both the alpha1- and the alpha2-subunit protein-band intensities were significantly increased compared with those of the non-stretched cells. Treatment with 50 micromol/L Gd3+ during the application of stretch prevented the upregulation of alpha2-expression but not that of alpha1-expression. Sodium pump activity, the functional counterpart of Na+,K+-ATPase, was inhibited as a result of stretch; Gd3+ had no effect on this variable. Our results suggest that in vascular smooth muscle, stretch may be a signal for the upregulation of both the alpha1- and alpha2-isoforms. However, a differential response of the two isoforms to the blocker of stretch-activated channels implies involvement of different mechanisms. This alteration in protein expression is not reflected in the function of the enzyme.