Suppr超能文献

人类诱导型一氧化氮合酶基因对脂多糖/γ干扰素低反应性的转录基础。

Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma.

作者信息

Zhang X, Laubach V E, Alley E W, Edwards K A, Sherman P A, Russell S W, Murphy W J

机构信息

Wilkinson Laboratory of the Cancer Center, University of Kansas Medical Center, Kansas City 66160-7184, USA.

出版信息

J Leukoc Biol. 1996 Apr;59(4):575-85. doi: 10.1002/jlb.59.4.575.

Abstract

The work reported here resolves, at the level of gene regulation, the controversy as to whether or not human monocytes/macrophages can produce nitric oxide (NO) when stimulated with lipopolysaccharide (LPS), with or without co-stimulation by interferon-gamma (IFN-gamma). Studies included structural comparison of the promoters for human and mouse inducible NO synthase (iNOS) genes, transfection and assay of human and mouse iNOS promoter regions in response to LPS +/- IFN-gamma, and electrophoretic mobility shift assays of kappa B response elements. Two explanations for hyporesponsiveness of the human iNOS promoter to LPS +/- IFN-gamma were found: (1) multiple inactivating nucleotide substitutions in the human counterpart of the enhancer element that has been shown to regulate LPS/IFN-gamma induced expression of the mouse iNOS gene; and (2) and absence of one or more nuclear factors in human macrophages (e.g., an LPS-inducible nuclear factor-kappa B/Rel complex), that is (are) required for maximal expression of the gene. The importance of resolution of this controversy is that future research in this area should be directed toward the understanding of alternative mechanisms that can result in the successful production of NO.

摘要

本文所报道的研究工作,在基因调控层面解决了关于人类单核细胞/巨噬细胞在用脂多糖(LPS)刺激时,无论有无干扰素-γ(IFN-γ)的共刺激,是否能够产生一氧化氮(NO)的争议。研究内容包括对人类和小鼠诱导型一氧化氮合酶(iNOS)基因启动子的结构比较、人类和小鼠iNOS启动子区域对LPS±IFN-γ反应的转染及检测,以及κB反应元件的电泳迁移率变动分析。发现人类iNOS启动子对LPS±IFN-γ反应低下有两种解释:(1)在已证明可调节小鼠iNOS基因LPS/IFN-γ诱导表达的增强子元件的人类对应物中存在多个失活核苷酸取代;(2)人类巨噬细胞中缺乏一种或多种基因最大表达所需的核因子(例如,一种LPS诱导的核因子-κB/Rel复合物)。解决这一争议的重要性在于,该领域未来的研究应致力于理解可导致成功产生NO的替代机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验