Hwa J, Graham R M, Perez D M
Department of Molecular Cardiology, Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA.
J Biol Chem. 1996 Apr 5;271(14):7956-64. doi: 10.1074/jbc.271.14.7956.
We have identified previously two amino acids, one in each of the fifth and sixth transmembrane segments of both the alpha1a-adrenergic receptor and the alpha1b-adrenergic receptor (AR), that account almost entirely for the selectivity of agonist binding by these receptor subtypes (Hwa, J., Graham, R. M., and Perez, D. M. (1995) J. Biol. Chem. 270, 23189-23195). Thus reversal of these two residues, from those found in the native receptor of one subtype to those in the other subtype, produces complementary changes in subtype selectivity of agonist binding. Here we show that mutating only one of these residues in either the alpha1b-AR or the alpha1a-AR to the corresponding residue in the other subtype (Ala204 --> Val for the alpha1b; Met292 --> Leu for the alpha1a-AR) results in chimeras that are constitutively active for signaling by both the phospholipase C and phospholipase A2 pathways. This is evident by an increased affinity for agonists, increased basal phospholipase C and phospholipase A2 activation, and increased agonist potency. Although mutation of the other residue involved in agonist binding selectivity, to the corresponding residue in the other subtype (Leu314 --> Met for the alpha1b-AR; Val185 --> Ala for the alpha1a-AR) does not alter receptor binding or signaling, per se, when combined with the corresponding constitutively activating mutations, the resulting chimeras, Ala204 --> Val/Leu314 --> Met ( alpha1b-AR) and Val185 --> Ala/Met292 --> Leu ( alpha1a-AR), display wild type ligand binding and signaling. A simple interpretation of these results is that the alpha1a- and alpha1b-ARs possess residues that critically modulate isomerization from the basal state, R, to the active state R*, and that the native receptor structures have evolved to select residues that repress active state isomerization. It is likely that the residues identified here modulate important interhelical interactions between the fifth and sixth transmembrane segments that inhibit or promote receptor signaling.
我们先前已经鉴定出两个氨基酸,分别位于α1a - 肾上腺素能受体和α1b - 肾上腺素能受体(AR)的第五和第六跨膜片段中,它们几乎完全决定了这些受体亚型对激动剂结合的选择性(Hwa,J.,Graham,R. M.,和Perez,D. M.(1995年)《生物化学杂志》270,23189 - 23195)。因此,将这两个残基从一种亚型的天然受体中的残基颠倒为另一种亚型中的残基,会使激动剂结合的亚型选择性产生互补变化。在这里我们表明,仅将α1b - AR或α1a - AR中的这两个残基之一突变为另一种亚型中的相应残基(α1b中Ala204→Val;α1a - AR中Met292→Leu)会产生嵌合体,这些嵌合体通过磷脂酶C和磷脂酶A2途径进行信号传导时组成型激活。这通过对激动剂的亲和力增加、基础磷脂酶C和磷脂酶A2激活增加以及激动剂效力增加而得以体现。尽管将参与激动剂结合选择性的另一个残基突变为另一种亚型中的相应残基(α1b - AR中Leu314→Met;α1a - AR中Val185→Ala)本身不会改变受体结合或信号传导,但当与相应的组成型激活突变结合时,产生的嵌合体Ala204→Val/Leu314→Met(α1b - AR)和Val185→Ala/Met292→Leu(α1a - AR)表现出野生型配体结合和信号传导。对这些结果的一个简单解释是,α1a - 和α1b - ARs拥有关键调节从基础状态R到活性状态R*异构化的残基,并且天然受体结构已经进化以选择抑制活性状态异构化的残基。很可能这里鉴定出的残基调节了第五和第六跨膜片段之间重要的螺旋间相互作用,这些相互作用抑制或促进受体信号传导。