Fang J, Zhu Y Y, Smiley E, Bonadio J, Rouleau J P, Goldstein S A, McCauley L K, Davidson B L, Roessler B J
Department of Pathology, University of Michigan Medical School, Ann Arbor, 48109, USA.
Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):5753-8. doi: 10.1073/pnas.93.12.5753.
Degradable matrices containing expression plasmid DNA [gene-activated matrices (GAMs)] were implanted into segmental gaps created in the adult rat femur. Implantation of GAMs containing beta-galactosidase or luciferase plasmids led to DNA uptake and functional enzyme expression by repair cells (granulation tissue) growing into the gap. Implantation of a GAM containing either a bone morphogenetic protein-4 plasmid or a plasmid coding for a fragment of parathyroid hormone (amino acids 1-34) resulted in a biological response of new bone filling the gap. Finally, implantation of a two-plasmid GAM encoding bone morphogenetic protein-4 and the parathyroid hormone fragment, which act synergistically in vitro, caused new bone to form faster than with either factor alone. These studies demonstrate for the first time that repair cells (fibroblasts) in bone can be genetically manipulated in vivo. While serving as a useful tool to study the biology of repair fibroblasts and the wound healing response, the GAM technology may also have wide therapeutic utility.
将含有表达质粒DNA的可降解基质[基因激活基质(GAM)]植入成年大鼠股骨的节段性缺损处。植入含有β-半乳糖苷酶或荧光素酶质粒的GAM会导致生长到缺损处的修复细胞(肉芽组织)摄取DNA并表达功能性酶。植入含有骨形态发生蛋白-4质粒或编码甲状旁腺激素片段(氨基酸1 - 34)的质粒的GAM会引发新骨填充缺损的生物学反应。最后,植入编码骨形态发生蛋白-4和甲状旁腺激素片段的双质粒GAM(这两种因子在体外具有协同作用)会使新骨形成得比单独使用任何一种因子时更快。这些研究首次证明,骨中的修复细胞(成纤维细胞)在体内可进行基因操作。GAM技术在作为研究修复成纤维细胞生物学和伤口愈合反应的有用工具的同时,可能还具有广泛的治疗用途。