Hingorani M M, Patel S S
Department of Biochemistry, Ohio State University, Columbus 43210, USA.
Biochemistry. 1996 Feb 20;35(7):2218-28. doi: 10.1021/bi9521497.
The equilibrium nucleotide binding and oligomerization of bacteriophage T7 gene 4 helicases have been investigated using thymidine 5'-triphosphate (dTTP), deoxythymidine 5'-(beta, gamma-methylenetriphosphate)(dTMP-PCP), thymidine 5'-diphosphate (dTDP), adenosine 5'-triphosphate (ATP), and adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S). In the presence of nucleotide ligands, T7 helicases self-assemble into hexamers with six potential nucleotide binding sites that are nonequivalent both in the absence and in the presence of single-stranded DNA. All nucleotides tested bind with high affinity to three sites (K(d) = 5 x 10(-6) M, dTTP; 6 x 10(-7) M, dTMP-PCP; 4 x 10(-6) M, dTDP; 3 x 10(-5) M, ATP; 2 x 10(-6) M, ATP gamma S), while binding to the remaining sites is undetectable. Interestingly, nucleotide binding to the high-affinity sites exhibits positive cooperativity which is sensitive to protein concentration. This effect is a result of ligand binding-linked oligomerization wherein helicase oligomer equilibrium changes as a function of both nucleotide and protein concentration. A study of DNA binding shows that 1-2 NTPs bound per hexamer are sufficient for stoichiometric interaction between the helicase and DNA. Thus, the ring-shaped helicase hexamers assemble around DNA with one, two, or three NTPs bound to each hexamer. This study also examines the preferred use of dTTP for T7 helicase-catalyzed DNA unwinding by comparison with ATP, the more commonly used nucleotide ligand. ATP binds to the helicase with 6-fold weaker affinity than dTTP and promotes hexamerization as well as DNA binding. Nevertheless, DNA unwinding with ATP is at least 100-fold slower than with dTTP. Thus, the difference in ATP and dTTP utilization probably lies in a highly specific step in the coupling of NTP hydrolysis to DNA unwinding.
利用胸腺嘧啶核苷5'-三磷酸(dTTP)、脱氧胸苷5'-(β,γ-亚甲基三磷酸)(dTMP-PCP)、胸腺嘧啶核苷5'-二磷酸(dTDP)、腺苷5'-三磷酸(ATP)和腺苷5'-O-(3-硫代三磷酸)(ATPγS),对噬菌体T7基因4解旋酶的平衡核苷酸结合和寡聚化进行了研究。在核苷酸配体存在的情况下,T7解旋酶自组装成六聚体,具有六个潜在的核苷酸结合位点,这些位点在不存在和存在单链DNA时都是不等同的。所有测试的核苷酸都以高亲和力结合到三个位点(解离常数K(d) = 5×10⁻⁶ M,dTTP;6×10⁻⁷ M,dTMP-PCP;4×10⁻⁶ M,dTDP;3×10⁻⁵ M,ATP;2×10⁻⁶ M,ATPγS),而与其余位点的结合则无法检测到。有趣的是,核苷酸与高亲和力位点的结合表现出正协同性,且对蛋白质浓度敏感。这种效应是配体结合相关寡聚化的结果,其中解旋酶寡聚体平衡随核苷酸和蛋白质浓度而变化。DNA结合研究表明,每个六聚体结合1 - 2个NTP就足以实现解旋酶与DNA之间的化学计量相互作用。因此,环状解旋酶六聚体围绕DNA组装,每个六聚体结合一个、两个或三个NTP。本研究还通过与更常用的核苷酸配体ATP比较,考察了T7解旋酶催化DNA解旋时对dTTP的优先使用情况。ATP与解旋酶的结合亲和力比dTTP弱6倍,且促进六聚化以及DNA结合。然而,用ATP进行DNA解旋比用dTTP至少慢100倍。因此,ATP和dTTP利用上的差异可能在于NTP水解与DNA解旋偶联过程中的一个高度特异性步骤。