Cook J A, Kim S Y, Teague D, Krishna M C, Pacelli R, Mitchell J B, Vodovotz Y, Nims R W, Christodoulou D, Miles A M, Grisham M B, Wink D A
Tumor Biology Section, National Cancer Institute, Bethesda, Maryland, 20892, USA.
Anal Biochem. 1996 Jul 1;238(2):150-8. doi: 10.1006/abio.1996.0268.
S-nitrosothiols have been shown to affect a number of physiological functions. Several techniques have been used to detect these species in biological systems, primarily by methods utilizing chemiluminescence. Since the apparatus required for measurement of chemiluminescence are not readily available in most laboratories, methods employing more conventional techniques such as uv-vis and fluorescence spectroscopy may be of greater use. Herein, we report the development of colorimetric and fluorometric methods for the reliable quantitation of S-nitrosothiols. Solutions containing sulfanilamide/N-(1-naphthyl)- ethylenediamine dihydrochloride or 2,2'-azinobis (3-ethylbenzthiazoline-6-sulfonic acid), when exposed to S-nitrosoglutathione (GSNO), S-nitrosocysteine, or S-nitrosoacteylpenicillamine, resulted in no absorbance changes in the range of 400-800 nm. Exposure to HgCl2 or Cu(acetate)2 resulted in release of nitric oxide (NO) from the S-nitrosothiols. The liberated NO reacted subsequently with oxygen and formed a chemical species which reacted with either analysis solution, resulting in an increase in absorption between 400 and 800 nm. A plot of RSNO versus absorbance was linear for both mercury(II) and copper(II) ions where the slope in the presence of mercury ion was significantly greater than that for copper ion. The sensitivity was as low as 5 microM RSNO using HgCl2. The fluorometric method using 2, 3-diaminonaphthalene as the scavenger of the NOsolidusO2 products gave a sensitivity of 50 nM for GSNO. In addition, S-nitrosylated proteins were quantitated using the fluorometric technique. These methods provide accurate determination of low concentrations of S-nitrosothiols, utilizing conventional spectroscopic techniques available in most laboratories.
已证实S-亚硝基硫醇会影响多种生理功能。人们已采用多种技术在生物系统中检测这些物质,主要是利用化学发光的方法。由于大多数实验室不易获得测量化学发光所需的仪器,采用紫外-可见光谱和荧光光谱等更常规技术的方法可能更有用。在此,我们报告了用于可靠定量S-亚硝基硫醇的比色法和荧光法的开发。含有磺胺/ N-(1-萘基)-乙二胺二盐酸盐或2,2'-偶氮双(3-乙基苯并噻唑啉-6-磺酸)的溶液,在暴露于S-亚硝基谷胱甘肽(GSNO)、S-亚硝基半胱氨酸或S-亚硝基乙酰青霉胺时,在400 - 800 nm范围内吸光度无变化。暴露于HgCl2或Cu(乙酸盐)2会导致S-亚硝基硫醇释放出一氧化氮(NO)。释放出的NO随后与氧气反应,形成一种与两种分析溶液都能反应的化学物质,导致400至800 nm之间的吸光度增加。对于汞(II)和铜(II)离子,RSNO与吸光度的关系图均呈线性,其中汞离子存在时的斜率明显大于铜离子的斜率。使用HgCl2时,灵敏度低至5 μM RSNO。使用2,3-二氨基萘作为NO/O2产物清除剂的荧光法对GSNO的灵敏度为50 nM。此外,还使用荧光技术对S-亚硝基化蛋白质进行了定量。这些方法利用大多数实验室都有的常规光谱技术,可准确测定低浓度的S-亚硝基硫醇。