Ni F, Carpenter K A, Ripoll D R, Sanderson S D, Hugli T E
Biotechnology Research Institute, National Research Council Canada, Montréal, Quebec.
Biopolymers. 1996 Jan;38(1):31-41. doi: 10.1002/(sici)1097-0282(199601)38:1<31::aid-bip3>3.0.co;2-x.
Synthetic analogues of the C-terminal portion of C5a were designed and found to be agonists of the C5a receptor [J. A. Ember et al. (1992) Jounral of Immunology, Vol. 148, p. 3165]. Nuclear magnetic resonance experiments were carried out to determine the solution conformation of the most potent analogue, the peptide C5a 65-74 (Tyr65, Phe67) (Tyr65-Ser66-Phe67-Lys68-Asp69-Met70 -Gln71- Leu72-Gly73-Arg74). Medium-range nuclear Overhauser effects (NOEs) were observed for residues 65-70 of this C5a peptide, suggesting that this region adopts a folded conformation in a significant population of the solution conformational ensemble. Quantitative analyses of (3)J(NH-alphaH) coupling constants and sequential NOE cross peaks gave an estimated helical population of 65% in the region Ser66-Met70. Additional evidence supporting the presence of a helical turn includes reduced amide-proton temperature coefficients and lowered (3)J(NH-alphaH) coupling constants in the region of Phe67-Met70. Conformational behavior of this C5a analogue peptide was studied using molecular modeling incorporating observed NOEs as constraints. The side chains of Tyr65, Phe67, and Met70 consistently form a hydrophobic cluster in all the model structures. The side chains of residues Ser66 and Asp69 can form reciprocal hydrogen bonds with the backbone NH groups of these two residues, indicating that residues Ser66-Phe67-Lys68-Asp69 (or SFKD) form a helix-stabilizing capping box (E. T. Harper and G. D. Rose (1993) Biochemistry, Vol. 32, p. 7605; H. X. Zhou et al. (1994) Proteins: Structure, Function and Genetics, Vol. 18, p. 1] even within the single turn of helical structure found in the analogue C5a peptide. A comparison of nmr results obtained for the analogue peptide and the natural decapeptide C5a 65-74 (Ile65-Ser66-His67-Lys68-Asp-69- Met70-Gln71-Leu72-Gly73-Arg74) indicated that incorporation of residues Tyr65 and Phe67 helps stabilize an isolated capping box involving residues Ser66-Asp69 in the C5a peptides through more extensive hydrophobic/aromatic interactions between residues Tyr65, Phe67, and Met70 in the analogue peptide C5a 65-74 (Tyr65, Phe67). These results constitute the first experimental demonstration of hydrophobic determinants in helical capping-box interactions, proposed recently by a statistical analysis of protein structures [J. W. Seale et al. (1994) Protein Science, Vol. 3, pp. 1741-1745]. The stabilized helical turn may also account for the greater potency of the analogue peptide C5a65-74 (Tyr65, Phe67) in receptor-binding assays.
设计了C5a C末端部分的合成类似物,并发现它们是C5a受体的激动剂[J. A. 恩伯等人(1992年)《免疫学杂志》,第148卷,第3165页]。进行了核磁共振实验,以确定最有效的类似物肽C5a 65 - 74(Tyr65,Phe67)(Tyr65 - Ser66 - Phe67 - Lys68 - Asp69 - Met70 - Gln71 - Leu72 - Gly73 - Arg74)的溶液构象。在该C5a肽的65 - 70位残基上观察到中等范围的核Overhauser效应(NOE),这表明该区域在溶液构象集合的大量分子中采取折叠构象。对(3)J(NH - αH)耦合常数和连续NOE交叉峰的定量分析表明,在Ser66 - Met70区域,螺旋结构的比例估计为65%。支持存在螺旋转角的其他证据包括,在Phe67 - Met70区域,酰胺质子温度系数降低以及(3)J(NH - αH)耦合常数降低。使用结合观察到的NOE作为约束条件的分子模型,研究了这种C5a类似物肽的构象行为。在所有模型结构中,Tyr65、Phe67和Met70的侧链始终形成一个疏水簇。Ser66和Asp69残基的侧链可以与这两个残基的主链NH基团形成相互的氢键,这表明Ser66 - Phe67 - Lys68 - Asp69(或SFKD)残基形成了一个螺旋稳定封端盒(E. T. 哈珀和G. D. 罗斯(1993年)《生物化学》,第32卷,第7605页;H. X. 周等人(1994年)《蛋白质:结构、功能与遗传学》,第18卷,第1页),即使在类似物C5a肽中发现的单螺旋结构转角内也是如此。对类似物肽和天然十肽C5a 65 - 74(Ile65 - Ser66 - His67 - Lys68 - Asp - 69 - Met70 - Gln71 - Leu72 - Gly73 - Arg74)获得的核磁共振结果进行比较表明,引入Tyr65和Phe67残基有助于通过类似物肽C5a 65 - 74(Tyr65,Phe67)中Tyr65、Phe67和Met70残基之间更广泛的疏水/芳香相互作用,稳定C/a肽中涉及Ser66 - Asp69残基的孤立封端盒。这些结果构成了对螺旋封端盒相互作用中疏水决定因素的首次实验证明,这是最近通过对蛋白质结构的统计分析提出的[J. W. 西尔等人(1994年)《蛋白质科学》,第3卷,第1741 - 1745页]。稳定的螺旋转角也可能解释了类似物肽C5a65 - 74(Tyr65,Phe67)在受体结合试验中更强的效力。