Suppr超能文献

Study of P-glycoprotein functionality in living resistant K562 cells after photolabeling with a verapamil analogue.

作者信息

Mankhetkorn S, Teodori E, Scapecchi S, Garnier-Suillerot A

机构信息

Laboratoire De Physicochimie Biomoléculaire et Cellulaire (URA 2056 CNRS), Université Paris Nord, Bobigny, France.

出版信息

Biochem Pharmacol. 1996 Jul 26;52(2):213-7. doi: 10.1016/0006-2952(96)00178-5.

Abstract

To our knowledge, this is the first study to investigate the modification of P-glycoprotein functionality in living resistant cells after photolabeling. For this purpose, four new photoactive verapamil analogues were synthesized. These compounds have the same efficacy as verapamil to increase pirarubicin (pira) incorporation into living multidrug resistant (MDR) K562 cells and to sensitize them to the cytotoxic effect of this anthracycline derivative, indicating that they act as typical MDR modifiers in MDR cells. These compounds were used to photolabel P-glycoprotein (P-gp) in living resistant cells. Irradiation did not result in photodamage to cells, and P-gp functionality was verified by the ability of living cells to incorporate pira. The irradiation of resistant cells, 10(6)/mL, in the presence of a verapamil analogue at concentrations equal to or higher than 3 microM yielded 70% inhibition of P-gp functionality. Our data provide the first evidence that the binding of a verapamil analogue to P-gp is not sufficient to completely inhibit the efflux of this anthracycline. The cells were, subsequently, cultured for several days. Resistance was progressively recovered with time, with the treated cells being just as resistant as before photolabeling after 6 days.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验