Ragni M, Golino P, Cirillo P, Pascucci I, Scognamiglio A, Ravera A, Esposito N, Battaglia C, Guarino A, Chiariello M
Cattedra di Cardiologia, Università degli Studi Federico II, Napoli.
Cardiologia. 1996 Jan;41(1):51-8.
The extrinsic coagulation pathway is activated when tissue factor (TF) is exposed as a consequence of arterial damage. TF binds to factor VII (FVII) or activated FVII (FVIIa), generating a complex that activates both FX and FIX, ultimately leading to thrombin formation. To determine whether inhibition of FVII binding to TF would result in antithrombotic effects, active site-blocked FVIIa (FVIIai) was used in a rabbit model of intravascular thrombus formation. In addition, to study the interaction between extrinsic coagulation pathway activation and platelet aggregation, in the same model of intravascular thrombus formation, recombinant human FVIIa was administered in antiplatelet-treated rabbits. Cyclic flow variations (CFVs), due to recurrent thrombus formation, were initiated by placing an external constrictor around the endothelially-injured rabbit carotid arteries (Folt's model). Carotid blood flow was measured continuously by a Doppler flow probe placed proximally to the constrictor. CFVs were induced in 29 New Zealand White rabbits. After CFVs were observed for 30 min, the animals were randomly divided in four groups: 5 animals received via a small catheter (26G) placed proximally to the stenosis, an intra-arterial infusion of human recombinant FVIIai (0.1 mg/kg/min for 10 min); 9 animals received AP-1, a monoclonal antibody against rabbit TF (0.1 mg/kg i.v. bolus); 7 animals received ridogrel, a dual thromboxane A2 synthetase inhibitor and thromboxane A2 receptor antagonist (10 mg/kg i.v. bolus); finally, 8 rabbits received aurintrycarboxilic acid (ATA), an inhibitor of platelet glycoprotein Ib/von Willebrand factor interaction (10 mg/kg i.v. bolus). FVIIai abolished CFVs in 5 of 5 animals (CFV frequency minutes 0 cycles/hour; p < 0.05; carotid blood flow velocity minutes 106 +/- 9% of the baseline values; NS vs baseline). AP-1 abolished CFVs in 7 of 9 animals (CFV frequency minutes 0 cycles/hour; p < 0.05; carotid blood flow velocity minutes 58 +/- 35% of the baseline values; NS vs baseline). Finally, in all the animals receiving ridogrel or ATA CFVs were abolished (CFV frequency 0 cycles/hour; p < 0.05 in both groups; carotid blood flow velocity, respectively 62 +/- 32 and 66 +/- 40% of the baseline values; NS vs baseline in both groups). Thirty minutes following inhibition of CFVs, in the FVIIai treated rabbits, human recombinant FVIIa was infused, via the small catheter placed proximally to the stenosis, at the dose of 0.1 mg/kg/min for 10 min. In the other three groups, FVIIa, at the same dose, was infused i.v. Infusion of FVIIa restored CFVs in all FVIIai treated animals and in 6 of 7 AP-1 treated animals, thus indicating that AP-1 and FVIIai bindings to TF was competitive and was replaced by FVIIa. Infusion of FVIIa failed to restore CFVs in ridogrel e ATA treated rabbits (1 of 7 and 0 of 8 rabbits, respectively), showing that activation of extrinsic coagulation by FVIIa was overcome by inhibition of platelet function. Activated partial thromboplastin time, and ex vivo platelet aggregation in response to ADP and thrombin, were not different after FVIIai infusion, while prothrombin time was slightly but significantly prolonged as compared to baseline values. Thus, FVII-VIIa plays an important role in initiating thrombus formation in vivo. Administration of FVIIai exerts a potent antithrombotic effects in this model without affecting systemic coagulation. In addition, in this model platelets exert an important role in arterial thrombosis, since in the presence of inhibition of platelet function, activation of the extrinsic coagulation pathway failed to restore thrombus formation.
当由于动脉损伤而使组织因子(TF)暴露时,外源性凝血途径被激活。TF与因子VII(FVII)或活化的FVII(FVIIa)结合,形成一种复合物,该复合物可激活FX和FIX,最终导致凝血酶形成。为了确定抑制FVII与TF的结合是否会产生抗血栓作用,在兔血管内血栓形成模型中使用了活性位点被阻断的FVIIa(FVIIai)。此外,为了研究外源性凝血途径激活与血小板聚集之间的相互作用,在相同的血管内血栓形成模型中,在抗血小板治疗的兔中给予重组人FVIIa。通过在受内皮损伤的兔颈动脉周围放置外部收缩器(Folt模型)引发由于反复血栓形成导致的循环血流变化(CFV)。通过放置在收缩器近端的多普勒血流探头连续测量颈动脉血流。在29只新西兰白兔中诱导出CFV。在观察CFV 30分钟后,将动物随机分为四组:5只动物通过放置在狭窄近端的小导管(26G)接受动脉内输注人重组FVIIai(0.1mg/kg/min,持续10分钟);9只动物接受AP-1,一种抗兔TF的单克隆抗体(0.1mg/kg静脉推注);7只动物接受利多米尔,一种双重血栓素A2合成酶抑制剂和血栓素A2受体拮抗剂(10mg/kg静脉推注);最后,8只兔子接受金精三羧酸(ATA),一种血小板糖蛋白Ib/血管性血友病因子相互作用的抑制剂(10mg/kg静脉推注)。FVIIai在5只动物中的5只中消除了CFV(CFV频率分钟0次/小时;p<0.05;颈动脉血流速度分钟为基线值的106±9%;与基线相比无显著性差异)。AP-1在9只动物中的7只中消除了CFV(CFV频率分钟0次/小时;p<0.05;颈动脉血流速度分钟为基线值的58±35%;与基线相比无显著性差异)。最后,在所有接受利多米尔或ATA的动物中CFV均被消除(CFV频率0次/小时;两组p均<0.05;颈动脉血流速度分别为基线值的62±32%和66±40%;两组与基线相比均无显著性差异)。在抑制CFV 30分钟后,在FVIIai治疗的兔中,通过放置在狭窄近端的小导管以0.1mg/kg/min的剂量输注人重组FVIIa,持续10分钟。在其他三组中,以相同剂量静脉输注FVIIa。输注FVIIa使所有FVIIai治疗的动物以及7只AP-1治疗的动物中的6只恢复了CFV,从而表明AP-1和FVIIai与TF的结合具有竞争性,并被FVIIa取代。输注FVIIa未能使利多米尔和ATA治疗的兔恢复CFV(分别为7只中的1只和8只中的0只),表明FVIIa对外源性凝血的激活被血小板功能的抑制所克服。输注FVIIai后,活化部分凝血活酶时间以及对ADP和凝血酶的体外血小板聚集与基线值无差异,而凝血酶原时间与基线值相比略有但显著延长。因此,FVII-VIIa在体内启动血栓形成中起重要作用。在该模型中给予FVIIai可发挥强大的抗血栓作用而不影响全身凝血。此外,在该模型中血小板在动脉血栓形成中起重要作用,因为在血小板功能受到抑制的情况下,外源性凝血途径的激活未能恢复血栓形成。