Vieth J B, Kober H, Grummich P
Department of experimental Neuropsychiatry, University of Erlangen-Nürnberg, Germany.
Brain Topogr. 1996 Spring;8(3):215-21. doi: 10.1007/BF01184772.
Electric or magnetic slow wave brain activity can be associated with brain lesions. For an accurate source localization we transformed the magnetoencephalographic (MEG) coordinate system to the magnetic resonance imaging (MRI) system by using a surface fit of the digitally measured head surface and the reconstructed surface of the MRI scan. Furthermore we solved the problem to separate sources of focal activity from other multiple sources by introducing a spatial average, the Dipole Density Plot (DDP). The DDP shows in a quantified manner concentrations of dipoles across time. The DDP uses the single dipole model adequately, because only those signal sections will be analyzed, where one component contributes to the signal predominantly. In all cases, where multiple sources concurrently active are to be localized, a current distribution analysis will be used, the Current Localization by Spatial Filtering (CLSF). All source localization procedures were tested using structural brain lesions, which were verified by imaging techniques (MRI or CT), showing the results in close topographical relation to the lesions. The results so far let us assume, that the DDP and the CLSF are valuable tools to localize sources of focal spontaneous slow wave electrical brain activity.
脑电或磁慢波活动可能与脑损伤有关。为了进行精确的源定位,我们通过对数字化测量的头部表面和磁共振成像(MRI)扫描的重建表面进行曲面拟合,将脑磁图(MEG)坐标系转换为MRI系统。此外,我们通过引入空间平均值——偶极子密度图(DDP),解决了将局灶性活动源与其他多个源分离的问题。DDP以量化的方式显示偶极子随时间的集中情况。DDP充分利用了单偶极子模型,因为仅会分析那些一个分量占主导地位的信号部分。在所有需要定位多个同时活跃源的情况下,将使用电流分布分析——空间滤波电流定位(CLSF)。所有源定位程序均使用结构性脑损伤进行测试,这些损伤通过成像技术(MRI或CT)进行验证,结果显示与损伤具有紧密的地形学关系。目前的结果使我们认为,DDP和CLSF是定位局灶性自发性脑电慢波活动源的有价值工具。