Suppr超能文献

Effects of sphingosine stereoisomers on P-glycoprotein phosphorylation and vinblastine accumulation in multidrug-resistant MCF-7 cells.

作者信息

Sachs C W, Ballas L M, Mascarella S W, Safa A R, Lewin A H, Loomis C, Carroll F I, Bell R M, Fine R L

机构信息

Department of Medicine, Duke University, Durham, NC 27705, USA.

出版信息

Biochem Pharmacol. 1996 Aug 23;52(4):603-12. doi: 10.1016/0006-2952(96)00312-7.

Abstract

To investigate the role of protein kinase C (PKC) in the regulation of multidrug resistance and P-glycoprotein (P-gp) phosphorylation, the natural isomer of sphingosine (SPH), D-erythro sphingosine (De SPH), and its three unnatural stereoisomers were synthesized. The SPH isomers showed similar potencies as inhibitors of in vitro PKC activity and phorbol binding, with IC50 values of approximately 50 microM in both assays. Treatment of multidrug-resistant MCF-7ADR cells with SPH stereoisomers increased vinblastine (VLB) accumulation up to 6-fold at 50 microM but did not alter VLB accumulation in drug-sensitive MCF-7 wild-type (WT) cells or accumulation of 5-fluorouracil in either cell line. Phorbol dibutyrate treatment of MCF-7ADR cells increased phosphorylation of P-gp, and this increase was inhibited by prior treatment with SPH stereoisomers. Treatment of MCF-7ADR cells with SPH stereoisomers decreased basal phosphorylation of the P-gp, suggesting inhibition of PKC-mediated phosphorylation of P-gp. Most drugs that are known to reverse multidrug resistance, including several PKC inhibitors, have been shown to directly interact with P-gp and inhibit drug binding. SPH stereoisomers did not inhibit specific binding of [3H] VLB to MCF-7ADR cell membranes or [3H]azidopine photoaffinity labeling of P-gp or alter P-gp ATPase activity. These results suggest that SPH isomers are not substrates of P-gp and suggest that modulation of VLB accumulation by SPH stereoisomers is associated with inhibition of PKC-mediated phosphorylation of P-gp.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验