Suppr超能文献

Mechanism and computer simulation of immune complex formation, opsonization, and clearance.

作者信息

Head M, Meryhew N, Runquist O

机构信息

Department of Chemistry, Hamline University, St. Paul, MN 55104, USA.

出版信息

J Lab Clin Med. 1996 Jul;128(1):61-74. doi: 10.1016/s0022-2143(96)90114-6.

Abstract

A computer simulation of immune complex formation, opsonization, and clearance has been developed (ICMODEL) that uses equations describing the kinetics of known immunologic processes and an additional pathologic process of immune complex-mediated tissue damage and antigen production. ICMODEL was used to (1) compare simulated with reported immune response kinetics, (2) evaluate the relative stability of the immune system described by the simulation, and (3) determine the conditions required to produce high immune complex levels as found in patients with immune complex-mediated disease. ICMODEL simulated primary and secondary immune responses as well as short- and long-term immunity. ICMODEL also depicted a relatively stable immune response system. Under certain conditions, however, the system could be perturbed, resulting in an unstable response. For example, when the rate constant regulating Fc gamma-mediated phagocytosis was decreased and the rate constant regulating immune complex-mediated tissue damage/antigen production was increased, immune complex concentrations oscillated with time and increased exponentially. These data suggest that ICMODEL can be used to define the specific parameters that, when perturbed, will give rise to increased immune complex concentrations. As such, this model has direct implications for studies of immune complex-mediated disease in human patients.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验