Suppr超能文献

一个预测106例患者右侧单侧电休克治疗癫痫阈值的统计模型。

A statistical model predicting the seizure threshold for right unilateral ECT in 106 patients.

作者信息

Colenda C C, McCall W V

机构信息

Department of Psychiatry and Behavioral Medicine, Bowman Gray School of Medicine, Winston-Salem, North Carolina 27517, USA.

出版信息

Convuls Ther. 1996 Mar;12(1):3-12.

PMID:8777650
Abstract

Titration of the electroconvulsive therapy (ECT) stimulus to the patient's convulsive threshold is the only way to directly assess the patient's seizure threshold. This technique is presently practiced by 39% of ECT providers, according to a recent survey. Because multiple variables influence the seizure threshold in patients, multivariate statistical methods may provide a useful strategy to determine which variables exert the most influence on convulsive threshold. A multivariate ordinal logistic model of seizure threshold was developed on an experimental group of 66 consecutive patients undergoing titrated right unilateral (RUL) ECT for major depression. The accuracy of the model was cross-validated on a second group of 40 patients undergoing similar RUL ECT procedures. The final multivariate ordinal logistic regression model for the seizure threshold level (STL) was significant (Likelihood ratio chi 2 = 54.115; p < 0.0001:R2 = 0.313). Increasing age, African-American race, and longer inion-nasion distances (p < 0.06) predicted higher STL. Female gender was associated with a lower STL. The ability of the final model to accurately predict STL for the validation group was fair (pairwise correlation was 0.576; p < 0.001). The model did well for predicting lower STL, but fared poorly for higher STL. In conclusion, modeling STL may help establish the relative contribution of variables thought to be important to seizure threshold. However, STL models remain impractical for clinical applications in estimating seizure threshold at this time, and empirical stimulus titration should be used.

摘要

将电惊厥治疗(ECT)刺激滴定至患者的惊厥阈值是直接评估患者癫痫发作阈值的唯一方法。根据最近的一项调查,目前39%的ECT提供者采用了这种技术。由于多种变量会影响患者的癫痫发作阈值,多变量统计方法可能提供一种有用的策略,以确定哪些变量对惊厥阈值影响最大。在一组连续66例接受滴定式右侧单侧(RUL)ECT治疗重度抑郁症的患者实验组中,建立了癫痫发作阈值的多变量有序逻辑模型。该模型的准确性在另一组40例接受类似RUL ECT程序的患者中进行了交叉验证。癫痫发作阈值水平(STL)的最终多变量有序逻辑回归模型具有显著性(似然比卡方=54.115;p<0.0001:R2=0.313)。年龄增加、非裔美国人种族和更长的枕外隆凸-鼻根距离(p<0.06)预示着更高的STL。女性性别与较低的STL相关。最终模型对验证组STL的准确预测能力一般(成对相关性为=0.576;p<0.001)。该模型在预测较低的STL方面表现良好,但在预测较高的STL方面表现不佳。总之,对STL进行建模可能有助于确定被认为对癫痫发作阈值重要的变量的相对贡献。然而,目前STL模型在临床应用中估计癫痫发作阈值方面仍然不实用,应采用经验性刺激滴定。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验