Suppr超能文献

心肌心室细胞二联体裂隙空间中的钙浓度与钙运动

Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell.

作者信息

Langer G A, Peskoff A

机构信息

Department of Medicine, UCLA School of Medicine 90095-1760, USA.

出版信息

Biophys J. 1996 Mar;70(3):1169-82. doi: 10.1016/S0006-3495(96)79677-7.

Abstract

We model the space between the junctional sarcoplasmic reticulum (JSR) membrane and the inner leaflet of the transverse tubular ("T") sarcolemmal (SL) membrane, the diadic cleft, with respect to calcium (Ca) concentration and movement. The model predicts the following: 1) Ca influx via the "L" channel increases [Ca] to 1 microM within a distance of 50 nm from the channel mouth in < 500 microseconds. This is sufficient to trigger Ca release from a domain of 9 "feet." 2) By contrast, "reverse" Na/Ca exchange will increase [Ca] to approximately 0.5 microM throughout the cleft space in 10 ms, sufficient to trigger Ca release, but clearly to a lesser extent and more slowly than the channel. 3) After a 20-ms JSR release into the cleft via the "feet" [Ca] peaks at 600 microM (cleft center) to 100 microM (cleft periphery) and then declines to diastolic level (100 nM) within 150 ms throughout the cleft. 4) The ratio of flux out of the cleft via Na/Ca exchange to flux out of the cleft to the cytosol varies inversely as JSR Ca release. 5) Removal of SL anionic Ca-binding sites from the model will cause [Ca] to fall to 100 nM throughout the cleft in < 1 ms after JSR release ceases. This markedly reduces Na/Ca exchange. 6) Removal from or decreased concentration of Na/Ca exchangers in the cleft will cause [Ca] to fall too slowly after JSR release to permit triggered release upon subsequent excitation.

摘要

我们针对钙(Ca)浓度和移动情况,对连接肌浆网(JSR)膜与横管(“T”)肌膜(SL)内膜之间的空间,即二联体裂隙进行建模。该模型预测如下:1)通过“L”型通道的钙内流在不到500微秒的时间内,使距离通道口50纳米范围内的[Ca]增加到1微摩尔/升。这足以触发来自9个“足”区域的钙释放。2)相比之下,“反向”钠/钙交换将在10毫秒内使整个裂隙空间的[Ca]增加到约0.5微摩尔/升,足以触发钙释放,但明显比通道作用的程度小且更缓慢。3)在通过“足”向裂隙进行20毫秒的JSR释放后,[Ca]在裂隙中心达到600微摩尔/升的峰值,在裂隙周边达到100微摩尔/升,然后在整个裂隙内150毫秒内降至舒张水平(100纳摩尔/升)。4)通过钠/钙交换从裂隙流出的通量与从裂隙流出到胞质溶胶的通量之比与JSR钙释放成反比。5)从模型中去除SL阴离子钙结合位点将导致在JSR释放停止后不到1毫秒内,整个裂隙中的[Ca]降至100纳摩尔/升。这显著降低了钠/钙交换。6)从裂隙中去除钠/钙交换体或降低其浓度将导致JSR释放后[Ca]下降过慢,无法在随后的兴奋时引发释放。

相似文献

1
Calcium concentration and movement in the diadic cleft space of the cardiac ventricular cell.
Biophys J. 1996 Mar;70(3):1169-82. doi: 10.1016/S0006-3495(96)79677-7.
2
Inner sarcolemmal leaflet Ca(2+) binding: its role in cardiac Na/Ca exchange.
Biophys J. 1996 May;70(5):2266-74. doi: 10.1016/S0006-3495(96)79792-8.
3
Energetics of Na(+)-Ca(2+) exchange in resting cardiac muscle.
Biophys J. 1999 Dec;77(6):3319-27. doi: 10.1016/S0006-3495(99)77163-8.
7
Localization of the Na/Ca exchange-dependent Ca compartment in cultured neonatal rat heart cells.
Am J Physiol. 1995 Jan;268(1 Pt 1):C119-26. doi: 10.1152/ajpcell.1995.268.1.C119.
8
Role of the Na(+)-Ca(2+) exchanger as an alternative trigger of CICR in mammalian cardiac myocytes.
Biophys J. 2002 Mar;82(3):1483-96. doi: 10.1016/S0006-3495(02)75502-1.

引用本文的文献

1
Electrodiffusion dynamics in the cardiomyocyte dyad at nano-scale resolution using the Poisson-Nernst-Planck (PNP) equations.
PLoS Comput Biol. 2025 Jun 12;21(6):e1013149. doi: 10.1371/journal.pcbi.1013149. eCollection 2025 Jun.
2
How does flecainide impact RyR2 channel function?
J Gen Physiol. 2022 Sep 5;154(9). doi: 10.1085/jgp.202213089. Epub 2022 Jun 17.
3
Electron microscopy of cardiac 3D nanodynamics: form, function, future.
Nat Rev Cardiol. 2022 Sep;19(9):607-619. doi: 10.1038/s41569-022-00677-x. Epub 2022 Apr 8.
5
Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia.
Front Cell Dev Biol. 2021 Jan 28;8:623381. doi: 10.3389/fcell.2020.623381. eCollection 2020.
6
7
Local membrane charge regulates β adrenergic receptor coupling to G.
Nat Commun. 2019 May 20;10(1):2234. doi: 10.1038/s41467-019-10108-0.
8
Nanothermometry Reveals Calcium-Induced Remodeling of Myosin.
Nano Lett. 2018 Nov 14;18(11):7021-7029. doi: 10.1021/acs.nanolett.8b02989. Epub 2018 Oct 23.
9
Ambiguous interactions between diastolic and SR Ca in the regulation of cardiac Ca release.
J Gen Physiol. 2017 Sep 4;149(9):847-855. doi: 10.1085/jgp.201711814. Epub 2017 Aug 10.

本文引用的文献

1
Movements of labelled calcium in squid giant axons.
J Physiol. 1957 Sep 30;138(2):253-81. doi: 10.1113/jphysiol.1957.sp005850.
3
Time courses of calcium and calcium-bound buffers following calcium influx in a model cell.
Biophys J. 1993 Jan;64(1):77-91. doi: 10.1016/S0006-3495(93)81342-0.
5
Subcellular restricted spaces: significance for cell signalling and excitation-contraction coupling.
J Muscle Res Cell Motil. 1993 Jun;14(3):288-91. doi: 10.1007/BF00123093.
8
Ca2+ transients in cardiac myocytes measured with high and low affinity Ca2+ indicators.
Biophys J. 1993 Oct;65(4):1632-47. doi: 10.1016/S0006-3495(93)81211-6.
9
Sodium current in isolated human ventricular myocytes.
Am J Physiol. 1993 Oct;265(4 Pt 2):H1301-9. doi: 10.1152/ajpheart.1993.265.4.H1301.
10
Relaxation in rabbit and rat cardiac cells: species-dependent differences in cellular mechanisms.
J Physiol. 1994 Apr 15;476(2):279-93. doi: 10.1113/jphysiol.1994.sp020130.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验