Suppr超能文献

一种用于乳腺细针穿刺细胞学检查的交互式决策支持系统。

An interactive decision support system for breast fine needle aspiration cytology.

作者信息

Hamilton P W, Anderson N H, Diamond J, Bartels P H, Gregg J B, Thompson D, Millar R J

机构信息

Quantitative Pathology Laboratory, Queen's University of Belfast.

出版信息

Anal Quant Cytol Histol. 1996 Jun;18(3):185-90.

PMID:8790830
Abstract

OBJECTIVE

To develop a computerized system to assist in the diagnosis of malignancy in breast fine needle aspiration cytology.

STUDY DESIGN

A Bayesian belief network was designed to control uncertainty and allow a diagnostic decision to be reached based on the sequential collection of cytologic information. Ten cytologic features were defined as clues that contribute to the diagnostic discrimination of benign and malignant aspirates. The impact of each feature on the diagnostic decision was quantified by a conditional probability matrix.

RESULTS

For the assessment of a new case, the computer guides the user through the diagnosis, prompting him or her for information on each of the diagnostic features in turn. For each feature, the user is presented with a series of digitally stored color microscopic images that have been selected to represent good examples of the different feature grades-e.g., pleomorphism: none, mild, moderate and severe. Each image is mapped to an overlapping curve, and by positioning a line on the spectrum where the user feels the case lies, a membership function vector is calculated and entered as evidence into the network. This results in an update in the belief in the diagnostic alternatives. After all the clues have been assessed, a final diagnostic probability is reported. In addition, a cumulative belief curve can be drawn that maps the change in the diagnostic probabilities after each piece of evidence has been submitted, providing unique insight into the diagnostic process.

CONCLUSION

Systems like this represent an important step forward in the use of descriptive classifiers. They impose consistency in terminology, improve reproducibility in the grading of cellular abnormalities and remove subjectivity in interpreting the significance of pvisual clues to diagnosis. As such, they represent a necessary tool in pathologic decision making.

摘要

目的

开发一种计算机化系统,以辅助乳腺细针穿刺细胞学恶性肿瘤的诊断。

研究设计

设计了一个贝叶斯信念网络来控制不确定性,并允许根据细胞学信息的顺序收集做出诊断决策。定义了十个细胞学特征作为有助于鉴别良性和恶性穿刺液的线索。每个特征对诊断决策的影响通过条件概率矩阵进行量化。

结果

对于新病例的评估,计算机指导用户进行诊断,依次提示用户提供每个诊断特征的信息。对于每个特征,向用户展示一系列数字存储的彩色显微图像,这些图像已被选来代表不同特征等级的良好示例,例如多形性:无、轻度、中度和重度。每个图像都映射到一条重叠曲线,通过在用户认为病例所在的光谱上定位一条线,计算隶属度函数向量并作为证据输入网络。这会导致对诊断备选方案的信念更新。在评估完所有线索后,报告最终诊断概率。此外,可以绘制一条累积信念曲线,该曲线描绘了每提交一条证据后诊断概率的变化,为诊断过程提供独特的见解。

结论

这样的系统代表了描述性分类器使用方面的重要进展。它们使术语保持一致,提高细胞异常分级的可重复性,并消除解释视觉诊断线索重要性时的主观性。因此,它们是病理决策中必不可少的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验