Zellmer S, Cevc G
Technische Universität München, Medizinische Biophysik, Klinikum r.d.I., Germany.
J Drug Target. 1996;4(1):19-29. doi: 10.3109/10611869609046257.
Thermolabile fusogenic liposomes were devised based on the stoichiometric 1/2 mixtures of dipalmitoylphosphatidylcholine (DPPC) and elaidic acid (ELA) and from the similar stoichiometric mixtures of DPPC, dipalmitoylphosphatidylglycerol (DPPG) and elaidoyl alcohol (EL-OH) or palmitelaidoyl alcohol (PEL-OH). The resulting vesicle suspensions are fusogenic in the region of hyperthermia (> or = 42 degrees C) and can be targeted selectively to the heated tumor tissue. Incorporation of DPPG or fatty alcohols into the vesicle membranes also leads to a non-specific, temporary vesicle material accumulation in the lung, however, probably due to platelet activation. Vesicle material accumulation in A-431 tumors, xenotransplanted in nude mice, after 30 min of local hyperthermia (42 degrees C) is 4-fold higher for the DPPC/ELA (1/2), 2.8-fold higher for the DPPC/DPPG/EL-OH (0.8/0.2/2) and 3.7-fold higher for the DPPC/ELA/EL-OH (1/1/1) mixtures than for similar vesicles used at the physiological temperature. Extension of hyperthermia to 60 min induces a 7.8-fold relative material accumulation in the tumor tissue when the thermolabile, fusogenic DPPC/ELA/EL-OH (1/1/1) vesicles are used. Simple DPPC vesicles only reach concentrations in the heated tumor or muscle tissue that are 1.85-fold and 1.38-fold higher than in the normothermic control, respectively. This is probably a consequence of simple vasodilatation. In vitro experiments revealed that the adsorption of serum proteins to the vesicle membrane decreases the chain-melting phase transition temperature and the transition enthalpy of vesicle suspension. Adsorption is most prominent at the chain-melting phase transition temperature of the mixed lipid bilayers, which is also the critical temperature for the induction of liposome fusion. This hampers the practical use of the resulting vesicle suspension in vivo. The serum-induced decrease of the chain-melting phase transition temperature, which is likely to change as a function of time in vivo, depends on the lipid composition and on the local surface charge density of vesicles. Incorporation of ELA and DPPG concentrations above 15 mol-%, for example, reduce the extent of protein adsorption onto vesicles. This has to be borne in mind when devising vesicles for practical applications.
热敏融合脂质体是基于二棕榈酰磷脂酰胆碱(DPPC)与反油酸(ELA)按化学计量比1/2混合,以及由DPPC、二棕榈酰磷脂酰甘油(DPPG)和反油醇(EL-OH)或棕榈反油醇(PEL-OH)按类似化学计量比混合而设计的。所得囊泡悬浮液在热疗区域(≥42℃)具有融合性,并且可以选择性地靶向加热的肿瘤组织。然而,将DPPG或脂肪醇掺入囊泡膜中也会导致囊泡物质在肺部非特异性、暂时性积聚,这可能是由于血小板激活所致。在裸鼠体内异种移植的A-431肿瘤中,局部热疗(42℃)30分钟后,DPPC/ELA(1/2)混合物的囊泡物质积聚比生理温度下使用的类似囊泡高4倍,DPPC/DPPG/EL-OH(0.8/0.2/2)混合物高2.8倍,DPPC/ELA/EL-OH(1/1/1)混合物高3.7倍。当使用热敏融合性DPPC/ELA/EL-OH(1/1/1)囊泡将热疗延长至60分钟时,肿瘤组织中的相对物质积聚诱导增加7.8倍。简单的DPPC囊泡在加热的肿瘤或肌肉组织中的浓度仅分别比正常体温对照高1.85倍和1.38倍。这可能是简单血管扩张的结果。体外实验表明,血清蛋白吸附到囊泡膜上会降低囊泡悬浮液的链熔化相变温度和相变焓。吸附在混合脂质双层的链熔化相变温度时最为显著,这也是诱导脂质体融合的临界温度。这妨碍了所得囊泡悬浮液在体内的实际应用。血清诱导的链熔化相变温度降低可能会在体内随时间变化,这取决于脂质组成和囊泡的局部表面电荷密度。例如,掺入高于15摩尔%的ELA和DPPG浓度可减少蛋白质吸附到囊泡上的程度。在设计用于实际应用的囊泡时必须牢记这一点。