Suppr超能文献

铁催化的二硫苏糖醇氧化是一个双相过程:过氧化氢参与自由基链反应的引发。

The iron-catalyzed oxidation of dithiothreitol is a biphasic process: hydrogen peroxide is involved in the initiation of a free radical chain of reactions.

作者信息

Netto L E, Stadtman E R

机构信息

Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.

出版信息

Arch Biochem Biophys. 1996 Sep 1;333(1):233-42. doi: 10.1006/abbi.1996.0386.

Abstract

Dithiothreitol (DTT) is the most common agent used to reduce disulfide bonds in proteins. In the presence of transition metals and O2, however, DTT can induce oxidative damage in biomolecules. By means of polarographic measurements, it was established that the DTT oxidation catalyzed by Fe3+ is a biphasic process, characterized by a lag phase of several minutes during which O2 is consumed at a slow rate, by a mechanism involving the DTT-dependent reduction of Fe3+ to Fe2+ and the conversion of O2 to H2O2. Some lines of evidence indicate that the reduction of Fe3+ is the rate-limiting step: (i) The replacement of Fe3+ with Fe2+ leads to a decrease in the length of the lag phase. (ii) The rate of Fe2+ formation by DTT is the same as the initial rate of O2 uptake, (iii) The rate of sulfhydryl oxidation under anaerobic conditions is very slow. EDTA stimulates the iron-catalyzed oxidation of DTT probably by accelerating Fe3+ reduction. The lag phase is followed by a rapid uptake of O2 involving both O2.(-)-dependent and O2.(-)-independent free radical reactions, which can proceed, albeit more slowly, in the absence of H2O2 (i.e., in the presence of catalase). Glutamine synthetase is inactivated faster when added during the phase of rapid O2 uptake than when added before the beginning of the reaction. In both cases, catalase protects the enzyme, suggesting that only reactive species generated by H2O2 decomposition are able to induce the inactivation.

摘要

二硫苏糖醇(DTT)是用于还原蛋白质中二硫键的最常用试剂。然而,在过渡金属和O2存在的情况下,DTT会诱导生物分子发生氧化损伤。通过极谱测量发现,Fe3+催化的DTT氧化是一个双相过程,其特征是有几分钟的延迟期,在此期间O2以缓慢的速率被消耗,其机制涉及DTT依赖性地将Fe3+还原为Fe2+以及将O2转化为H2O2。一些证据表明Fe3+的还原是限速步骤:(i)用Fe2+替代Fe3+会导致延迟期长度缩短。(ii)DTT形成Fe2+的速率与O2摄取的初始速率相同。(iii)厌氧条件下巯基的氧化速率非常缓慢。EDTA可能通过加速Fe3+的还原来刺激铁催化的DTT氧化。延迟期之后是O2的快速摄取,这涉及O2(-)-依赖性和O2(-)-非依赖性自由基反应,在没有H2O2(即存在过氧化氢酶)的情况下,这些反应也可以进行,尽管速度较慢。当在O2快速摄取阶段添加谷氨酰胺合成酶时,其失活速度比在反应开始前添加时更快。在这两种情况下,过氧化氢酶都能保护该酶,这表明只有H2O2分解产生的活性物质才能诱导失活。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验