Voelker U, Voelker A, Haldenwang W G
Department of Microbiology, University of Texas Health Science Center, San Antonio 78284-7758, USA.
J Bacteriol. 1996 Sep;178(18):5456-63. doi: 10.1128/jb.178.18.5456-5463.1996.
sigma B is a secondary sigma factor that controls the general stress regulon in Bacillus subtilis. The regulon is activated when sigma B is released from a complex with an anti-sigma B protein (RsbW) and becomes free to associate with RNA polymerase. Two separate mechanisms cause sigma B release: an ATP-responsive mechanism that correlates with nutritional stress and an ATP-independent mechanism that responds to environmental insult (e.g., heat shock and ethanol treatment). ATP levels are thought to directly affect RsbW's binding preference. Low levels of ATP cause RsbW to release sigma B and bind to an alternative protein (RsbV), while high levels of ATP favor RsbW-sigma B complex formation and inactivation of RsbV by an RsbW-dependent phosphorylation. During growth, most of the RsbV is phosphorylated (RsbV-P) and inactive. Environmental stress induces the release of sigma B and the formation of the RsbW-RsbV complex, regardless of ATP levels. This pathway requires the products of additional genes encoded within the eight-gene operon (sigB) that includes the genes for sigma B, RsbW, and RsbV. By using isoelectric focusing techniques to distinguish RsbV from RsbV-P and chloramphenicol treatment or pulse-chase labeling to identify preexisting RsbV-P, we have now determined that stress induces the dephosphorylation of RsbV-P to reactivate RsbV. RsbV-P was also found to be dephosphorylated upon a drop in intracellular ATP levels. The stress-dependent and ATP-responsive dephosphorylations of RsbV-P differed in their requirements for the products of the first four genes (rsbR, -S, -T, and -U) of the sigB operon. Both dephosphorylation reactions required at least one of the genes included in a deletion that removed rsbR, -S, and -T; however, only an environmental insult required RsbU to reactivate RsbV.
σB是一种次要的σ因子,它控制枯草芽孢杆菌中的一般应激调节子。当σB从与抗σB蛋白(RsbW)的复合物中释放出来并自由与RNA聚合酶结合时,该调节子被激活。有两种独立的机制导致σB释放:一种与营养应激相关的ATP响应机制和一种对环境损伤(如热休克和乙醇处理)作出反应的ATP非依赖机制。ATP水平被认为直接影响RsbW的结合偏好。低水平的ATP导致RsbW释放σB并与另一种蛋白质(RsbV)结合,而高水平的ATP有利于RsbW-σB复合物的形成以及RsbW依赖的磷酸化作用使RsbV失活。在生长过程中,大多数RsbV被磷酸化(RsbV-P)且无活性。环境应激会诱导σB的释放以及RsbW-RsbV复合物的形成,而与ATP水平无关。该途径需要包含σB、RsbW和RsbV基因的八基因操纵子(sigB)内编码的其他基因的产物。通过使用等电聚焦技术区分RsbV和RsbV-P,以及氯霉素处理或脉冲追踪标记来鉴定预先存在的RsbV-P,我们现在已经确定应激会诱导RsbV-P去磷酸化以重新激活RsbV。还发现细胞内ATP水平下降时RsbV-P也会去磷酸化。RsbV-P的应激依赖性和ATP响应性去磷酸化在对sigB操纵子前四个基因(rsbR、-S、-T和-U)产物的需求方面有所不同。两种去磷酸化反应都需要至少一个包含在缺失rsbR、-S和-T的基因中;然而,只有环境损伤需要RsbU来重新激活RsbV。