Login I S, Harrison M B
Department of Neurology, University of Virginia, Charlottesville 22908, USA.
Brain Res. 1996 Jul 15;727(1-2):162-8. doi: 10.1016/0006-8993(96)00364-2.
We tested the hypothesis that a D1 dopamine agonist could stimulate acetylcholine release directly from striatal cholinergic neurons. A suspension of viable dissociated striatal cells was made enzymatically and mechanically from normal adult male rats. The heterogeneous suspension was incubated in [3H]choline to allow synthesis of [3H]acetylcholine selectively by cholinergic neurons. Fractional [3H]acetylcholine release from the cholinergic cells in the suspension was recorded during continuous dynamic perifusion. The D1 agonist, 50 microM (+/-) SKF 38393, increased the basal rate of release from the cholinergic cells by 50% and the action was inhibited by the D1 antagonist, SKF 83566. Stimulation of [3H]acetylcholine secretion was recorded as low as 500 nM SKF 38393. The (S, -) SKF 38393 stereoisomer was significantly less effective than the (R, +) isomer in stimulating release. The D1-mediated stimulation of acetylcholine secretion was abolished in a low-calcium environment that also inhibited basal release. The data suggest that striatal cholinergic cells express D1 receptors functionally coupled to the regulation of acetylcholine release. These D1 actions in the absence of synaptic circuitry imply that such circuitry is not required in situ. In vivo however, indirectly mediated D1 actions and those of other transmitters may modify the manifestations of this direct cholinergic stimulation.