Suppr超能文献

使用多尺度鲁棒方法对磁共振图像进行配准。

The registration of MR images using multiscale robust methods.

作者信息

Alexander M E, Somorjai R L

机构信息

National Research Council Canada, Institute for Biodiagnostics, Winnipeg, Canada.

出版信息

Magn Reson Imaging. 1996;14(5):453-68. doi: 10.1016/0730-725x(96)00045-8.

Abstract

Acquisition of MR images involves their registration against some prechosen reference image. Motion artifacts and misregistration can seriously flaw their interpretation and analysis. This article provides a global registration method that is robust in the presence of noise and local distortions between pairs of images. It uses a two-stage approach, comprising an optional Fourier phase-matching method to carry out preregistration, followed by an iterative procedure. The iterative stage uses a prescribed set of registration points, defined on the reference image, at which a robust nonlinear regression is computed from the squared residuals at these points. The method can readily accommodate general linear or even nonlinear, registration transformations on the images. The algorithm was tested by recovering the registration transformation parameters when a 256 x 256 pixel T2*-weighted human brain image was scaled, rotated, and translated by prescribed amounts, and to which different amounts of Gaussian noise had been added. The results show subpixel accuracy of recovery when no noise is present, and graceful degradation of accuracy as noise is added. When 40% noise is added to images undergoing small shifts, the recovery errors are less than 3 pixels. The same tests applied to the Woods algorithm gave slightly inferior accuracy for these images, but failed to converge to the correct parameters in some cases of large-scale-shifted images with 10% added noise.

摘要

获取磁共振图像需要将它们与一些预先选定的参考图像进行配准。运动伪影和配准错误会严重影响对它们的解读和分析。本文提供了一种全局配准方法,该方法在存在噪声和图像对之间的局部失真情况下具有鲁棒性。它采用两阶段方法,包括一个可选的傅里叶相位匹配方法来进行预配准,随后是一个迭代过程。迭代阶段使用在参考图像上定义的一组规定的配准点,在这些点处根据这些点的平方残差计算鲁棒的非线性回归。该方法可以很容易地适应图像上的一般线性甚至非线性配准变换。当对一幅256×256像素的T2*加权人脑图像按规定量进行缩放、旋转和平移,并添加不同量的高斯噪声时,通过恢复配准变换参数对该算法进行了测试。结果表明,在无噪声情况下恢复具有亚像素精度,并且随着噪声的添加精度会适度下降。当对经历小位移的图像添加40%的噪声时,恢复误差小于3个像素。对伍兹算法进行相同测试时,对于这些图像其精度略低,但在某些添加了10%噪声的大规模位移图像的情况下未能收敛到正确参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验