Suppr超能文献

Fluorescence imaging study of organic anion transport from renal proximal tubule cell to lumen.

作者信息

Miller D S, Letcher S, Barnes D M

机构信息

Intracellular Regulation Section, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.

出版信息

Am J Physiol. 1996 Sep;271(3 Pt 2):F508-20. doi: 10.1152/ajprenal.1996.271.3.F508.

Abstract

The mechanisms driving organic anion transport from cell to lumen were studied in intact killifish proximal tubules using fluorescence microscopy. Three fluorescent substrates were used as follows: 1) fluorescein (FL); 2) carboxyfluorescein (CF), generated intracellularly from carboxyfluorescein diacetate (CFDA); and 3) bimane-S conjugates, generated intracellularly by conjugation of monochlorobimane (MCB) with glutathione (GSH) and subsequent metabolism. The latter two substrates bypassed the basolateral uptake mechanism, allowing direct study of luminal transport mechanisms. At steady state, for all three substrates, luminal fluorescence was two to three times higher than cellular fluorescence. With FL as substrate, addition of p-aminohippurate (PAH) or probenecid to the incubation medium reduced cellular and luminal fluorescence to roughly the same extent. With CFDA or MCB as substrate, PAH and probenecid only slightly reduced cellular fluorescence but greatly reduced luminal fluorescence. MCB blocked transport of FL from cell to lumen; CFDA blocked transport of bimane-S conjugates from cell to lumen. Finally, depolarizing tubule cells with high-potassium medium did not affect the steady-state lumen-to-cell distribution of FL, CF, or bimane-S conjugates. These results show that organic anion transport from cell to lumen is mediated and uphill but not sensitive to the electrical potential difference across the luminal membrane.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验