Walrand S H, van Elmbt L R, Pauwels S
Centre de Médecine Nucléaire, Université Catholique de Louvain, Bruxelles, Belgium.
Eur J Nucl Med. 1996 Nov;23(11):1521-6. doi: 10.1007/BF01254478.
Single-photon emission tomographic (SPET) reconstruction can be improved, especially for noisy images, by using the iterative expectation-maximization of the maximum-likelihood (EM-ML) algorithm. Its application to clinical routine is, however, hampered by the high number of iterations necessary to achieve acceptable results. Therefore various methods have been developed to accelerate the EM-ML algorithm. In this paper a new accelerated EM-ML-like multiplicative algorithm is proposed for SPET reconstruction. Contrary to some other accelerating methods, it preserves two of the most important properties of the EM-ML, namely pixel positivity inside the patient body and null activity outside. The convergence speed is improved by a factor which can reach 100 in high spatial frequency or low count regions. Good estimates in the low count region are obtained without any smoothing, even at typical routine clinical count rates. The algorithm used in conjunction with the 3D effective one scatter path model provides high-quality SPET images and accurate quantitation.
通过使用最大似然期望最大化(EM-ML)算法进行迭代,单光子发射断层扫描(SPET)重建可以得到改善,尤其是对于噪声图像。然而,其在临床常规应用中,由于需要大量迭代才能获得可接受的结果而受到阻碍。因此,人们开发了各种方法来加速EM-ML算法。本文提出了一种新的用于SPET重建的类似加速EM-ML的乘法算法。与其他一些加速方法不同,它保留了EM-ML的两个最重要特性,即患者体内像素的正性和体外零活性。在高空间频率或低计数区域,收敛速度提高了一个可达100的因子。即使在典型的常规临床计数率下,在低计数区域也能在不进行任何平滑处理的情况下获得良好的估计。该算法与三维有效单散射路径模型结合使用,可提供高质量的SPET图像和定量分析。