Suppr超能文献

无髓鞘轴突中节律性活动和平台动作电位的药理学诱导。

Pharmacological induction of rhythmical activity and plateau action potentials in unmyelinated axons.

作者信息

Pichon Y

机构信息

Equipe de Neurobiologie, Neuropharmacologie Moleculaire et Ecotoxicologie, CNRS, Universite de Rennes, France.

出版信息

J Physiol Paris. 1995;89(4-6):171-80. doi: 10.1016/0928-4257(96)83634-5.

Abstract

The physiological function of the axon is to conduct short all-or-none action potentials from their site of initiation (usually the cell body) to the synapse. To ensure this function, both passive and active biophysical properties of the axons are tuned very precisely, especially the voltage-dependent ionic conductances to sodium and potassium. Under normal conditions, axons are not spontaneously active. Minor modifications of their ionic micro-environment or slight changes in the membrane properties are however sufficient to induce rhythmical activity and modify the time course of the action potentials. These modifications can be induced by a variety of pharmacological agents. Some typical examples taken from original studies on invertebrate preparations are illustrated. The experiments were carried out on two axonal preparations: the giant axon of the squid Loligo forbesi and the giant axon of the cockroach Periplaneta americana. The axons were 'space-clamped' and studied under both current-clamp and voltage-clamp conditions. Voltage-clamp experiments were used to dissect out the mechanisms underlying repetitive activity and to extract the relevant parameters. These parameters were then used to rebuild the observed effects using an extended version of the Hodgkin and Huxley (1952, J Physiol (Lond) 117, 500-544) formulation. One easy way to get repetitive firing in both preparations is to reduce potassium conductance. The effect of 4-aminopyridine on squid axon is illustrated here. The experimental results, including the occurrence of bursts of activity, can be described by adding a time- and voltage-dependent block of the potassium channels to the original Hodgkin and Huxley (1952, J Physiol (Lond) 117, 500-544) model. Repetitive spike activity and plateau action potentials are also produced when the depolarising effect of the voltage-dependent potassium current is counterbalanced by a maintained inward sodium current. This maintained sodium current can be due to several different mechanisms. This will be illustrated by five structurally unrelated molecules: two scorpion toxins, two insecticide molecules and one sea anemone toxin. One toxin purified from the venom of the scorpion Buthotus judaicus (insect toxin 1) exerts its effects by shifting the sodium activation curve towards more hyperpolarized potentials. Another toxin purified from the venom of another scorpion Androctonus australis (mammal toxin 1) modifies a significant proportion of normal (fast) sodium channels into slowly activating and inactivating sodium channels. The main effect of the insecticide DDT is to maintain sodium channels in the 'open' configuration. Another insecticide molecule known to induce repetitive activity, S-bioallethrin, activates voltage-dependent sodium channels with slow activation and inactivation kinetics. The sea anemone toxin anthopleurin A, purified from the venom of Anthopleura xanthogrammica, delays inactivation of the sodium current without changing its activation kinetics. These examples show that minor modifications of the properties of the nerve membrane are sufficient to alter nerve function. These deleterious effects will be amplified at the synapse through dramatic changes in transmitter release and will lead eventually to disastrous alterations of brain function.

摘要

轴突的生理功能是将短程的全或无动作电位从其起始部位(通常是细胞体)传导至突触。为确保该功能,轴突的被动和主动生物物理特性都经过了非常精确的调节,尤其是对钠和钾的电压依赖性离子电导。在正常情况下,轴突不会自发活动。然而,其离子微环境的微小改变或膜特性的轻微变化就足以诱发节律性活动并改变动作电位的时间进程。这些改变可由多种药理剂诱导产生。文中列举了一些来自无脊椎动物制剂原始研究的典型例子。实验在两种轴突制剂上进行:福布斯氏枪乌贼的巨大轴突和美洲大蠊的巨大轴突。这些轴突进行了“空间钳制”,并在电流钳和电压钳条件下进行研究。电压钳实验用于剖析重复活动背后的机制并提取相关参数。然后使用霍奇金和赫胥黎(1952年,《伦敦生理学杂志》117卷,500 - 544页)公式的扩展版本,利用这些参数重建观察到的效应。在这两种制剂中产生重复放电的一种简单方法是降低钾电导。此处展示了4 - 氨基吡啶对枪乌贼轴突的作用。通过在原始的霍奇金和赫胥黎(1952年,《伦敦生理学杂志》117卷,500 - 544页)模型中加入钾通道的时间和电压依赖性阻断,就可以描述包括活动爆发在内的实验结果。当电压依赖性钾电流的去极化效应被持续的内向钠电流抵消时,也会产生重复的锋电位活动和平板动作电位。这种持续的钠电流可能归因于几种不同的机制。这将通过五种结构不相关的分子来说明:两种蝎毒素、两种杀虫剂分子和一种海葵毒素。从犹大杀人蝎毒液中纯化的一种毒素(昆虫毒素1)通过将钠激活曲线向更超极化的电位移动来发挥作用。从另一种澳大利亚杀人蝎毒液中纯化的另一种毒素(哺乳动物毒素1)将相当一部分正常(快速)钠通道转变为缓慢激活和失活的钠通道。杀虫剂滴滴涕的主要作用是使钠通道保持在“开放”构型。另一种已知可诱导重复活动的杀虫剂分子S - 生物烯丙菊酯,以缓慢的激活和失活动力学激活电压依赖性钠通道。从黄斑海葵毒液中纯化的海葵毒素海葵素A,可延迟钠电流的失活而不改变其激活动力学。这些例子表明,神经膜特性的微小改变就足以改变神经功能。这些有害效应将在突触处通过递质释放的剧烈变化而被放大,并最终导致脑功能的灾难性改变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验