Suppr超能文献

Determination of intracellular Ca2+ concentration can be a useful tool to predict neuronal damage and neuroprotective properties of drugs.

作者信息

Ferger D, Krieglstein J

机构信息

Institut für Pharmakologie und Toxikologie, Philipps-Universität, Marburg, Germany.

出版信息

Brain Res. 1996 Sep 2;732(1-2):87-94. doi: 10.1016/0006-8993(96)00494-5.

Abstract

The purpose of the present study was to examine the relationship between elevation in intracellular Ca2+ concentration ([Ca2+]i) and development of neuronal damage after cytotoxic hypoxia in vitro. Chick telencephalic neurons were exposed to NaCN 1 mM for up to 2 h. [Ca2+]i was assessed by means of fura-2 based microfluorometry and viability was measured by means of trypan blue exclusion on the same relocated cells for a period 24 h after initiation of hypoxia. Exposure to sodium cyanide resulted in an up to 10 fold increase in [Ca2+]i and led to subsequent neuronal damage. According to [Ca2+]i and viability neurons in four different stages could be revealed. The percentage of neurons showing elevated [Ca2+]i paralleled exactly the percentage of neuronal damage. The elevation in [Ca2+]i clearly preceded neuronal damage suggesting a time window for pharmacological intervention. The NMDA antagonists dizocilpine, memantine and amantadine were capable of reducing the percentage of neurons showing elevated [Ca2+]i and attenuated neuronal damage. Dizocilpine proved to be the most potent and amantadine to be the weakest antagonist whereas the alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo-(F)-quinoxaline (NBQX) was ineffective. Under our experimental conditions, measurement of [Ca2+]i was able to predict the extent of neuronal damage as well as the neuroprotective potency of drugs.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验