Maichele A J, Burwinkel B, Maire I, Søvik O, Kilimann M W
Institut für Physiologische Chemie, Ruhr-Universität Bochum, Germany.
Nat Genet. 1996 Nov;14(3):337-40. doi: 10.1038/ng1196-337.
Heritable deficiency of phosphorylase kinase (Phk), a regulatory enzyme of glycogen metabolism, is responsible for 25% of all cases of glycogen storage disease and occurs with a frequency of -1 in 100,000 births. It is genetically and clinically heterogeneous, occurring in X-linked and autosomal-recessive forms and exhibiting various patterns of principally affected tissues (liver only, muscle only, liver and muscle, liver and kidney, heart only). This heterogeneity is thought to reflect the enzyme's structural complexity [subunit composition, (alpha beta gamma delta)4] and isoform diversity. Two isoforms encoded by separate genes are known for the subunits alpha (muscle [alpha M] and liver [alpha L isoforms) and gamma (muscle [gamma M] and testis [gamma T] isoforms), whereas only one gene appears to exist for the subunit beta. The subunit delta is calmodulin; identical calmodulins are expressed from three different human genes. Additional isoform diversity arises by differential mRNA splicing of the alpha M, alpha L and beta subunits. Mutations responsible for the various forms of Phk deficiency are sought in those subunit/isoform genes with a matching chromosomal location and tissue-specificity of expression. We report here that autosomal liver-specific Phk deficiency is associated with mutations in the gene encoding the testis/liver isoform of the catalytic gamma subunit (PHKG2). We found homozygous PHKG2 mutations in three human patients of consanguineous parentage and in the gsd (glycogen storage disease) rat strain, which is thus identified as an animal model for the human disorder. One human mutation is a single base-pair insertion in codon 89 that causes a frameshift and premature chain termination. The three other mutations result in non-conservative replacements of amino acid residues (V106E, G189E, D215N) that are highly conserved within the catalytic core regions of all protein kinases. These are the first mutations to be reported for an autosomal form of Phk deficiency. The findings suggest that the PHKG2 gene product is the predominant isoform of the catalytic gamma subunit of Phk not only in testis but also in liver, erythrocytes and, possibly, other non-muscle tissues.
磷酸化酶激酶(Phk)是糖原代谢的一种调节酶,其遗传性缺乏占所有糖原贮积病病例的25%,在出生中的发生率约为1/100,000。它在遗传和临床方面具有异质性,以X连锁和常染色体隐性形式出现,并表现出主要受累组织的各种模式(仅肝脏、仅肌肉、肝脏和肌肉、肝脏和肾脏、仅心脏)。这种异质性被认为反映了该酶的结构复杂性[亚基组成,(αβγδ)4]和同工型多样性。已知由不同基因编码的两种同工型分别对应亚基α(肌肉[αM]和肝脏[αL]同工型)和γ(肌肉[γM]和睾丸[γT]同工型),而亚基β似乎只有一个基因。亚基δ是钙调蛋白;相同的钙调蛋白由三种不同的人类基因表达。通过αM、αL和β亚基的差异mRNA剪接产生了额外的同工型多样性。在那些具有匹配染色体定位和组织特异性表达的亚基/同工型基因中寻找导致各种形式Phk缺乏的突变。我们在此报告,常染色体肝脏特异性Phk缺乏与编码催化γ亚基睾丸/肝脏同工型(PHKG2)的基因突变有关。我们在三名近亲结婚的人类患者和gsd(糖原贮积病)大鼠品系中发现了纯合的PHKG2突变,因此该大鼠品系被确定为人类疾病的动物模型。一种人类突变是密码子89处的单个碱基对插入,导致移码和提前链终止。其他三种突变导致氨基酸残基的非保守替换(V106E、G189E、D215N),这些残基在所有蛋白激酶的催化核心区域内高度保守。这些是常染色体形式Phk缺乏首次报道的突变。研究结果表明,PHKG2基因产物不仅在睾丸中,而且在肝脏、红细胞以及可能的其他非肌肉组织中是Phk催化γ亚基的主要同工型。