Suppr超能文献

The production and characterization of artificial heterodimers of the restriction endonuclease EcoRV.

作者信息

Wende W, Stahl F, Pingoud A

机构信息

Institut für Biochemie, Justus-Liebig-Universität Giessen, Germany.

出版信息

Biol Chem. 1996 Oct;377(10):625-32. doi: 10.1515/bchm3.1996.377.10.625.

Abstract

A novel approach to studying the inter- and intrasubunit communication required for the activity of homodimeric proteins is described. It was developed for the restriction endonuclease EcoRV, but should also be useful for other homodimeric enzymes. Two ecorV genes encoding different EcoRV mutants are coexpressed in the same Escherichia coli cell leading to homo- and heterodimeric variants of the enzyme. The two ecorV genes carry either a 5' extension coding for the glutathione-S-transferase or a His6-tag. The EcoRV heterodimer produced in vivo is separated from the two EcoRV homodimers and purified to homogeneity by affinity chromatography. Purified EcoRV heterodimers are stable and are not subject to reassortment of the subunits. To investigate the interdependence of the two catalytic centers, EcoRV heterodimers consisting of one subunit with wild type sequence and one subunit with amino acid substitutions in the PD...(D/E)XK motif, characteristic for the active sites of many restriction endonucleases, were produced. While the homodimeric EcoRV active site mutants are catalytically inactive, the heterodimeric EcoRV variants with one active and one inactive catalytic center display a twofold reduced activity toward oligodeoxynucleotide substrates compared to the wild type, and preferentially nick supercoiled plasmid DNA. From these results we conclude that in the wild type enzyme both catalytic centers function independently of each other.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验