Moosavi-Movahedi A A, Bordbar A K, Taleshi A A, Naderimanesh H M, Ghadam P
Institute of Biochemistry and Biophysics, University of Tehran, Iran.
Int J Biochem Cell Biol. 1996 Sep;28(9):991-8. doi: 10.1016/1357-2725(96)00044-1.
Bovine serum albumin (BSA) denaturation has been extensively studied by different anionic and cationic surfactant. Dodecyl trimethylammonium bromide (DTAB) is a cationic surfactant, and it is suggested that it binds to the C-terminal section of BSA. In the present study, the thermodynamical denaturation of BSA by dodecyl trimethylammonium bromide (DTAB) has been studied with various experimental techniques. Equilibrium dialysis, thermal denaturation, gel electrophoresis, titration microcalorimetry at pH 7, I = 0.005, and different temperatures were all performed. The enthalpy obtained from the van't Hoff relation and calorimetry method as well as electrophoresis results were utilized to explain the BSA tranistion state. Major findings included: the binding isotherm shifts at a low free concentrations of DTAB and at a higher temperature suggest endothermicity for enthalpy of interaction; the calorimetry enthalpy (delta Hcal) of interaction was smaller than the van't Hoff enthalpy (delta HvH) for BSA-DTAB interaction; and the aggregation of BSA increased with increasing DTAB concentration. This study suggests that BSA unfolding induced by DTAB follows a multistate transition model and does not follow the two-state mechanism assumed for most single subunit proteins.