Suppr超能文献

Antigen-specific cytotoxic T cells mediate human fetal pancreas allograft rejection in SCID-hu mice.

作者信息

Rouleau M, Namikawa R, Antonenko S, Carballido-Perrig N, Roncarolo M G

机构信息

Human Immunology Department, DNAX Research Institute of Molecular and Cellular Biology, Palo Alto, CA 94304, USA.

出版信息

J Immunol. 1996 Dec 15;157(12):5710-20.

PMID:8955225
Abstract

Human allograft rejection was studied in SCID mice transplanted with human fetal liver and thymus tissue (SCID-hu mice). These SCID-hu mice have functional, mature T cells with a polyclonal TCR repertoire. Within 12 to 36 wk after construction, SCID-hu mice were transplanted with an HLA-mismatched human fetal pancreas. In contrast to control SCID mice transplanted with pancreas alone, cellular infiltration, induction of HLA-DR on pancreatic epithelial cells, and tissue destruction of the allogenic pancreata were observed in SCID-hu mice. In addition, human insulin was not detected in the serum of SCID-hu mice in which pancreas rejection occurred. The infiltrating cells were mainly human CD3+ T lymphocytes of thymic origin, expressing the CD45RO isoform. T cell lines and CD4+ T cell clones obtained from the rejected tissues proliferated vigorously when stimulated with EBV-transformed B cell lines of pancreas donor origin. Furthermore, the majority of these CD4+ T cell clones displayed strong allospecific cytotoxicity. In addition, CD8+ T cell clones cytotoxic for EBV-transformed B cell lines of pancreas donors were isolated. Blocking experiments with anti-HLA mAbs and panel studies with HLA-matched cell lines showed that these CD4+ and CD8+ T cell clones were specific for the HLA class II and class I molecules, respectively, expressed by the pancreas donor. These data indicate that human T lymphocytes developing in SCID-hu mice are able to mount in vivo responses against allogenic organs, resulting in tissue infiltration and rejection. In addition, they show that both CD4(+)- and CD8(+)-allospecific CTL can be isolated from rejected allogenic pancreata.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验