Suppr超能文献

上丘电刺激诱发的斜向扫视过程中水平和垂直幅度的独立反馈控制

Independent feedback control of horizontal and vertical amplitude during oblique saccades evoked by electrical stimulation of the superior colliculus.

作者信息

Nichols M J, Sparks D L

机构信息

Department of Psychology, University of Pennsylvania, Philadelphia 19104, USA.

出版信息

J Neurophysiol. 1996 Dec;76(6):4080-93. doi: 10.1152/jn.1996.76.6.4080.

Abstract
  1. In early local feedback models for controlling horizontal saccade amplitude, a feedback signal of instantaneous eye position is continuously subtracted from a reference signal of desired eye position at a comparator. The output of the comparator is dynamic motor error, the remaining distance the eyes must rotate to reach the saccadic goal. When feedback reduces dynamic motor error to zero, the saccade stops on target. Two classes of local feedback model have been proposed for controlling oblique saccades (i.e., saccades with both horizontal and vertical components). In "independent comparator" models, separate horizontal and vertical comparators maintain independent representations of horizontal and vertical dynamic motor error. Thus, once an oblique desired displacement signal is established, the horizontal and vertical amplitudes of oblique saccades are under independent feedback control. In "vectorial comparator" models, output cells in the motor map of the superior colliculus act as site-specific vectorial comparators. For a given oblique desired displacement, a single comparator controls the amplitudes of both components. Because vectorial comparator models do not maintain separate representations of horizontal and vertical dynamic motor error, they cannot exert independent control over the component amplitudes of oblique saccades. 2. We tested differential predictions of these two types of models by electrically stimulating sites in the superior colliculus of rhesus monkey immediately after either vertical or horizontal visually guided saccades. We have shown previously that, despite the fixed site of collicular stimulation, the amplitude of the visually guided saccades systematically alters the amplitude of the corresponding component (horizontal or vertical) of stimulation-evoked saccades. However, in the present study, we examined the effect of the visually guided saccades on the amplitude of the orthogonal component of stimulation-evoked saccades. 3. For a fixed site of collicular stimulation, vectorial comparator models predict that the initial visually guided saccade will influence both components of the ensuing stimulation-evoked saccade via the single feedback comparator. By contrast, independent comparator models permit the independent manipulation of the horizontal and vertical amplitudes of these oblique stimulation-evoked saccades. 4. In total, we collected data from 15 collicular stimulation sites. Immediately after either horizontal or vertical visually guided saccades of different amplitudes, we measured the horizontal and vertical amplitudes of saccades evoked by stimulation of the intermediate or deep layers of the superior colliculus. For each site, the duration, frequency, and current of the stimulation train were held constant. 5. Under these conditions, stimulation-evoked saccades followed visually guided saccades with short latency (18.1 +/- 6.7 ms, mean +/- SD). For every stimulation site tested, although the amplitude of the component of stimulation-evoked saccades corresponding to the direction of the preceding saccade (horizontal or vertical) varied systematically, the amplitude of the orthogonal component was roughly constant. 6. Thus the horizontal and vertical amplitudes of oblique stimulation-evoked saccades can be manipulated independently. Moreover, the peak velocity-amplitude relationships, the instantaneous velocity profiles, and the ratio of horizontal and vertical velocities and durations were very similar to those of visually guided saccades. 7. Independent comparator models can readily account for the ability to manipulate the amplitude of one component of oblique saccades without affecting the other. However, two-dimensional local feedback models that cannot exert independent control over the horizontal and vertical amplitudes of oblique saccades should be carefully reevaluated.
摘要
  1. 在早期用于控制水平扫视幅度的局部反馈模型中,在比较器处,瞬时眼位的反馈信号会不断地从期望眼位的参考信号中减去。比较器的输出是动态运动误差,即眼睛为达到扫视目标还必须转动的剩余距离。当反馈将动态运动误差减小到零时,扫视在目标处停止。已经提出了两类用于控制斜向扫视(即具有水平和垂直分量的扫视)的局部反馈模型。在“独立比较器”模型中,水平和垂直比较器分开,分别维持水平和垂直动态运动误差的独立表征。因此,一旦建立了斜向期望位移信号,斜向扫视的水平和垂直幅度就处于独立的反馈控制之下。在“矢量比较器”模型中,上丘运动图谱中的输出细胞充当特定位置的矢量比较器。对于给定的斜向期望位移,单个比较器控制两个分量的幅度。由于矢量比较器模型不维持水平和垂直动态运动误差的独立表征,所以它们不能对斜向扫视的分量幅度进行独立控制。2. 我们通过在恒河猴的上丘部位进行电刺激来测试这两种模型的不同预测,刺激是在垂直或水平视觉引导扫视之后立即进行的。我们之前已经表明,尽管丘刺激部位固定,但视觉引导扫视的幅度会系统性地改变刺激诱发扫视的相应分量(水平或垂直)的幅度。然而,在本研究中,我们研究了视觉引导扫视对刺激诱发扫视的正交分量幅度的影响。3. 对于固定的丘刺激部位,矢量比较器模型预测,初始的视觉引导扫视将通过单个反馈比较器影响随后刺激诱发扫视的两个分量。相比之下,独立比较器模型允许对这些斜向刺激诱发扫视的水平和垂直幅度进行独立操控。4. 我们总共从15个丘刺激部位收集了数据。在不同幅度的水平或垂直视觉引导扫视之后,我们立即测量了上丘中层或深层刺激诱发扫视的水平和垂直幅度。对于每个部位,刺激串的持续时间、频率和电流保持恒定。5. 在这些条件下,刺激诱发扫视跟随视觉引导扫视,潜伏期很短(18.1±6.7毫秒,平均值±标准差)。对于每个测试的刺激部位,尽管刺激诱发扫视与前一个扫视方向(水平或垂直)对应的分量幅度系统性地变化,但正交分量的幅度大致恒定。6. 因此,斜向刺激诱发扫视的水平和垂直幅度可以独立操控。此外,峰值速度 - 幅度关系、瞬时速度剖面以及水平和垂直速度与持续时间的比率与视觉引导扫视非常相似。7. 独立比较器模型能够很容易地解释操控斜向扫视一个分量的幅度而不影响另一个分量的能力。然而,那些不能对斜向扫视的水平和垂直幅度进行独立控制的二维局部反馈模型应该被仔细地重新评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验