Otero G, Avila M A, Emfietzoglou D, Clerch L B, Massaro D, Notario V
Department of Radiation Medicine, Georgetown University Medical Center, Washington, District of Columbia 20007, USA.
Mol Carcinog. 1996 Dec;17(4):175-80. doi: 10.1002/(SICI)1098-2744(199612)17:4<175::AID-MC1>3.0.CO;2-D.
The levels of the antioxidant enzyme manganese superoxide dismutase (Mn-SOD) are frequently decreased in tumor cells and increased in normal cells upon treatment with ionizing radiation. We studied Mn-SOD at different stages during the neoplastic conversion of radiation-initiated Syrian hamster embryo HDR-3 cells. Mn-SOD activity and the concentration of Mn-SOD protein and mRNA increased gradually during the malignant transformation of HDR-3 cells after radiation exposure; fully neoplastic cells showed greater Mn-SOD levels than preneoplastic and normal 84-3 cells. Inhibitors of superoxide (SO) anion production (thenoyltrifluoroacetone and rotenone) decreased the concentration of Mn-SOD mRNA, raising the possibility that the generation of SO radicals participated in the upregulation of Mn-SOD in cells transformed by exposure to radiation. We observed an increase in the concentration of tumor necrosis factor alpha (TNF alpha) in HDR-3 cells relative to mock-irradiated cells. Together with the observation that TNF alpha stimulates the production of SO by mitochondria and increases the level of Mn-SOD mRNA in other experimental systems, our results suggest that as normal 84-3 cells undergo malignant transformation induced by ionizing radiation they produce TNF alpha, to which the cells respond by increasing the concentration of Mn-SOD mRNA and protein and the activity of the enzyme.