Suppr超能文献

The cerebral cortex and parafascicular thalamic nucleus facilitate in vivo acetylcholine release in the rat striatum through distinct glutamate receptor subtypes.

作者信息

Consolo S, Baldi G, Giorgi S, Nannini L

机构信息

Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.

出版信息

Eur J Neurosci. 1996 Dec;8(12):2702-10. doi: 10.1111/j.1460-9568.1996.tb01565.x.

Abstract

Electrical stimulation (ten pulses of 0.5 ms, 10 V applied over 10 s at 10 Hz, 140 microA) delivered bilaterally to the prefrontal cortex or the parafascicular thalamic nucleus of freely moving rats facilitated acetylcholine release in dorsal striata, assessed by trans-striatal microdialysis. The facilitatory effects were blocked by coperfusion with 5 microM tetrodotoxin, suggesting that the release was of neuronal origin. The response of the striatal cholinergic neurons to prefrontal cortical stimulation was short-lived and required a longer period of stimulation (20 min) that the response to thalamic stimulation (4 min) to reach maximal effect. The alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA)/kainate glutamatergic receptor antagonist 6,7-dinitroquinoxaline-2,3-dione [DNQX; 12 nmol per side, intracerebroventricularly (i.c.v.)] and the AMPA antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (NBQX; 12 nmol per side, i.c.v. or 12.8 microM infused into the striatum), but not the NMDA-type receptor antagonist MK-801 (0.2 mg/kg, i.p.), abolished the facilitatory effect on striatal acetylcholine release evoked by stimulation of the prefrontal cortex. By contrast, DNQX or NBQX did not prevent the increase in striatal acetylcholine release evoked by parafascicular nucleus stimulation, but MK-801, in accordance with previous results, did so. MK-801 by itself lowered striatal acetylcholine output while DNQX and NBQX did not. The results provide in vivo evidence that the cerebral cortex facilitates cholinergic activity in the dorsal striatum apparently through the non-tonic activation of AMPA-type glutamatergic receptors while the parafascicular nucleus does this through tonic activation of NMDA receptors. Both glutamate receptor types are probably located in the striatum. The overall results suggest that the two pathways operate independently to regulate striatal cholinergic activity through distinct mechanisms.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验