Ihnken K, Morita K, Buckberg G D, Winkelmann B, Schmitt M, Ignarro L J, Sherman M P
Department of Cardiovascular Surgery, Albert-Ludwigs-University Freiburg, Germany.
Angiology. 1997 Mar;48(3):189-202. doi: 10.1177/000331979704800301.
Reintroduction of high levels of molecular oxygen after a hypoxic period is followed by a burst of nitric oxide (NO), peroxynitrite, and oxygen free radicals (OFR), which are highly cytotoxic. This study indicates that hyperoxic reoxygenation of cyanotic immature hearts on cardiopulmonary bypass (CPB) induces a reoxygenation injury and that, by reducing NO and OFR production during institution of CPB with subsequent reoxygenation under blood cardioplegic arrest, this oxygen-related damage can be avoided and biochemical and functional status improved. Of 25 immature piglets (3-5 kg, two to three weeks old), 6 underwent one hour of CPB including thirty minutes of aortic clamping with substrate-enriched modified blood cardioplegia (hypocalcemic, alkalotic, and hyperosmolar; warm induction-cold replenishment-warm reperfusion) without preceding hypoxia (controls). Nineteen others were made hypoxic (arterial [Po2] 20-30 mmHg) for up to two hours by lowering the fraction of inspired oxygen (FIO2) on ventilator. These hypoxic piglets were then reoxygenated on CPB at different Po2 levels (hyperoxic, normoxic, or hypoxic) for five minutes, followed by the aforementioned blood cardioplegic (BCP) arrest regimen. Myocardial conjugated diene (CD) production as a marker of lipid peroxidation, and NO production, determined as its spontaneous oxidation products, nitrite (NO2-) and nitrate (NO3-), were assessed during blood cardioplegic induction, and antioxidant reserve capacity was determined by incubating myocardium in the oxidant t-butylhydroperoxide (t-BHP). Myocardial function was evaluated from end-systolic elastance (Ees, conductance catheter). Blood cardioplegic arrest caused no functional or biochemical changes in normoxic control immature piglets. In contrast, brief reoxygenation at PO2 > 400 mmHg, followed by BCP-arrest (hyperoxic) resulted in marked CD production (42 +/- 4 vs 3 +/- 1 A233 nm/minute/100 g; P < 0.05), and NO production (4500 +/- 500 vs 450 +/- 32 mmol/minute/100 g; P < 0.05) during blood cardioplegic induction, reduced antioxidant reserve capacity (malondialdehyde [MDA] at 4.0 mM of t-BHP: 1342 +/- 59 vs 958 +/- 50 nM/g protein; P < 0.05), and caused profound myocardial dysfunction; Ees recovered only 21 +/- 2% (vs 104 +/- 7; P < 0.05), despite the blood cardioplegic regimen shown to be cardioprotective in control normoxic piglets. Conversely, controlling initial PO2 to normoxic (100 mmHg) or hypoxic (20-30 mmHg) levels reduced lipid peroxidation (CD production 16 +/- 2, 2 +/- 1 A233nm/minute/100 g) and NO production (1264 +/- 736, 270 +/- 182 mmol/minute/100 g), restored antioxidant reserve capacity (MDA at 4.0 mM of t-BHP: 940 +/- 95, 982 +/- 88 nM/g protein), and allowed significant functional recovery (58 +/- 11% and 83 +/- 8%), in a PO2-dependent fashion. The authors conclude that reoxygenation of hypoxemic immature hearts by initiating hyperoxic CPB causes oxidant-related damage characterized by lipid peroxidation, enhanced NO production, and reduced antioxidants, leading to functional depression that nullifies the cardioprotective effects of blood cardioplegia. These detrimental effects can be reduced in a PO2-dependent fashion by controlling initial PO2 on CPB and subsequent reoxygenation during blood cardioplegic arrest.
缺氧期后重新引入高水平分子氧会引发一氧化氮(NO)、过氧亚硝酸盐和氧自由基(OFR)的爆发,这些物质具有高度细胞毒性。本研究表明,体外循环(CPB)期间青紫未成熟心脏的高氧复氧会诱导复氧损伤,并且通过在CPB期间减少NO和OFR的产生,并在血液停搏液停搏下随后复氧,可以避免这种与氧相关的损伤,并改善生化和功能状态。25只未成熟仔猪(3 - 5千克,2至3周龄)中,6只接受了1小时的CPB,包括30分钟的主动脉钳夹,采用富含底物的改良血液停搏液(低钙、碱化和高渗;温诱导 - 冷补充 - 温再灌注),且无先前缺氧(对照组)。另外19只通过降低呼吸机上的吸入氧分数(FIO2)使其缺氧(动脉血氧分压[Po2] 20 - 30 mmHg)长达两小时。然后这些缺氧仔猪在不同的Po2水平(高氧、常氧或低氧)下在CPB上复氧5分钟,随后采用上述血液停搏液(BCP)停搏方案。在血液停搏液诱导期间评估心肌共轭二烯(CD)产生作为脂质过氧化的标志物,以及NO产生,通过其自发氧化产物亚硝酸盐(NO2 -)和硝酸盐(NO3 -)来测定,并通过在氧化剂叔丁基过氧化氢(t - BHP)中孵育心肌来测定抗氧化储备能力。通过收缩末期弹性(Ees,电导导管)评估心肌功能。血液停搏液停搏对常氧对照未成熟仔猪的功能或生化无影响。相反,在PO2 > 400 mmHg下短暂复氧,随后进行BCP停搏(高氧)导致在血液停搏液诱导期间显著的CD产生(42 ± 4 vs 3 ± 1 A233 nm/分钟/100克;P < 0.05)和NO产生(4500 ± 500 vs 450 ± 32 mmol/分钟/100克;P < 0.05),降低抗氧化储备能力(在4.0 mM t - BHP时丙二醛[MDA]:1342 ± 59 vs 958 ± 50 nM/克蛋白质;P < 0.05),并导致严重的心肌功能障碍;Ees仅恢复21 ± (与104 ± 7相比;P < 0.05),尽管血液停搏液方案在对照常氧仔猪中显示具有心脏保护作用。相反,将初始PO2控制在常氧(100 mmHg)或低氧(20 -)水平可降低脂质过氧化(CD产生16 ± 2,2 ± 1 A233nm/分钟/100克)和NO产生(1264 ± 736,270 ± 182 mmol/分钟/100克),恢复抗氧化储备能力(在4.0 mM t - BHP时MDA:940 ± 95,982 ± 88 nM/克蛋白质),并以PO2依赖的方式实现显著的功能恢复(58 ± 和83 ± 8%)。作者得出结论,通过启动高氧CPB对低氧未成熟心脏进行复氧会导致以脂质过氧化、NO产生增加和抗氧化剂减少为特征的与氧化剂相关的损伤,导致功能抑制,从而抵消血液停搏液的心脏保护作用。通过控制CPB上的初始PO2以及血液停搏液停搏期间的后续复氧,可以以PO2依赖的方式减少这些有害影响。