Shim J Y, Richard A M
National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
Chem Res Toxicol. 1997 Jan;10(1):103-10. doi: 10.1021/tx9600863.
The selective nephrotoxicity of halogenated alkenes has been attributed to a glutathione (GSH) S-conjugate pathway involving enzymatic hydrolysis to the cysteine S-conjugate and beta-lyase bioactivation to thiolates, which are presumed to give rise to the ultimate mutagenic or cytotoxic reactive species. Studies have shown that the brominated S-(2,2-dihalo-1,1-difluoroethyl)-L-cysteine conjugates are mutagenic in the Ames test, whereas the nonbrominated analogues are nonmutagenic. While careful experimentation has contributed much to current understanding, the ultimate reactive species responsible for the differing mutagenic effects remain unknown. Computational methods were applied to the investigation of two proposed metabolic pathways leading from the thiolate to either a thiirane or thionoacyl fluoride intermediate, both electrophilic species presumed capable of binding to proteins or DNA. Studied were six F-, Cl-, and Br-substituted 2,2-dihalo-1,1-difluoroethane-1-thiolates (2,2-dihalo-DFETs). Pathway preference was determined for each thiolate by comparison of reaction energy profiles and activation energies. At all but the lowest level of ab initio theory, a thionoacyl fluoride pathway was predicted for 2,2-difluoro-DFET, while a thiirane pathway was energetically preferred for the brominated 2,2-dihalo-DFETs. These results offer a clear mechanism-based rationale for distinguishing 2,2-difluoro-DFET from the brominated 2,2-dihalo-DFETs, while the results are less clear for the 2,2-dichloro and 2-chloro-2-fluoro-DFETs, which at the highest level of ab initio treatment had a relatively small energy preference (2.4 kcal/mol) for the thiirane pathway. The predicted clear preference for a thiirane pathway for the brominated 2,2-dihalo-DFETs is not consistent with a recently proposed pathway involving alpha-thiolactone formation through a thionoacyl fluoride intermediate [Finkelstein, M. B., et al. (1995) J. Am. Chem. Soc. 117, 9590-9591], but is supported by results of a recent study providing experimental evidence for thiirane formation from the brominated 2,2-dihalo-DFETs [Finkelstein, M. B., et al. (1996) Chem. Res. Toxicol. 9, 227-231].
卤代烯烃的选择性肾毒性归因于谷胱甘肽(GSH)S-共轭途径,该途径涉及酶促水解为半胱氨酸S-共轭物以及β-裂解酶生物活化生成硫醇盐,据推测硫醇盐会产生最终的诱变或细胞毒性反应性物种。研究表明,溴化的S-(2,2-二卤-1,1-二氟乙基)-L-半胱氨酸共轭物在艾姆斯试验中具有致突变性,而非溴化类似物则无致突变性。尽管仔细的实验对当前的理解有很大贡献,但导致不同诱变效应的最终反应性物种仍然未知。计算方法被应用于研究从硫醇盐通向硫杂环丙烷或硫代酰氟中间体的两条 proposed 代谢途径,这两种亲电物种都被认为能够与蛋白质或DNA结合。研究了六种F-、Cl-和Br-取代的2,2-二卤-1,1-二氟乙烷-1-硫醇盐(2,2-二卤-DFETs)。通过比较反应能量分布和活化能来确定每种硫醇盐的途径偏好。除了最低水平的从头算理论外,预测2,2-二氟-DFET会生成硫代酰氟途径,而溴化的2,2-二卤-DFET在能量上更倾向于硫杂环丙烷途径。这些结果为区分2,2-二氟-DFET和溴化的2,2-二卤-DFET提供了基于机制的明确理由,而对于2,2-二氯和2-氯-2-氟-DFETs,结果不太明确,在最高水平的从头算处理中,它们对硫杂环丙烷途径的能量偏好相对较小(2.4千卡/摩尔)。对于溴化的2,2-二卤-DFETs,预测的硫杂环丙烷途径的明显偏好与最近提出的通过硫代酰氟中间体形成α-硫内酯的途径不一致[芬克尔斯坦,M. B.等人(1995年)《美国化学会志》117,9590 - 9591],但得到了最近一项研究结果的支持,该研究为从溴化的2,2-二卤-DFETs形成硫杂环丙烷提供了实验证据[芬克尔斯坦,M. B.等人(1996年)《化学研究毒理学》9,227 - 231]。