Suppr超能文献

跨膜渗透通量对通过微电极测量的紧邻膜区域离子浓度分布的影响。

The effect of a transmembrane osmotic flux on the ion concentration distribution in the immediate membrane vicinity measured by microelectrodes.

作者信息

Pohl P, Saparov S M, Antonenko Y N

机构信息

Martin-Luther-Universităt, Medizinische Fakultät, Institut für Medizinische Physik und Biophysik, Halle, Germany.

出版信息

Biophys J. 1997 Apr;72(4):1711-8. doi: 10.1016/S0006-3495(97)78817-9.

Abstract

The osmotically induced transmembrane water flow is accompanied by solute concentration changes within the unstirred layer adjacent to membranes. Experimental concentration profiles, measured by means of microelectrodes in the immediate vicinity of a planar lipid bilayer, are compared with theoretical ones predicted from the standard physiological model in which the osmotic advection is countered by back-diffusion of the solute only. An increase of the apparent osmotic flow rate is induced by an increase of the osmotic gradient and by rigorous stirring. The polarization effect decreases in the latter case due to an increase of the transfer rate of solutes between the bulk solutions and the membrane surfaces, whereas it increases in the former case. The observations show that the concentration profile is not well described by the standard approximation. The discrepancy becomes increasingly large with increased volume flow. Based on a modified theoretical description of the interaction between water flux and diffusion, the hydraulic conductivity of the bilayer is calculated from the measured uniexponential concentration profiles. The common approximation that there is a discrete boundary between the stirred and unstirred regions adjacent to the membrane is substituted by the model of a stagnant point flow that takes into account a gradual change of the stirring velocity in the immediate membrane vicinity. Supported by experimental observations, this approach predicts a shortening of the unstirred layer if the transmembrane osmotic gradient is increased under gentle stirring conditions.

摘要

渗透诱导的跨膜水流伴随着与膜相邻的未搅拌层内溶质浓度的变化。通过平面脂质双分子层紧邻区域的微电极测量得到的实验浓度分布,与仅通过溶质反向扩散抵消渗透平流的标准生理模型预测的理论浓度分布进行了比较。渗透梯度的增加和剧烈搅拌会导致表观渗透流速增加。在后一种情况下,由于溶质在本体溶液和膜表面之间的转移速率增加,极化效应降低,而在前一种情况下则增加。观察结果表明,标准近似法不能很好地描述浓度分布。随着体积流量的增加,差异变得越来越大。基于对水通量与扩散相互作用的改进理论描述,根据测量的单指数浓度分布计算双层膜的水力传导率。膜相邻的搅拌区和未搅拌区之间存在离散边界这一常见近似,被考虑了膜紧邻区域搅拌速度逐渐变化的驻点流模型所取代。在实验观察的支持下,该方法预测在温和搅拌条件下增加跨膜渗透梯度时未搅拌层会缩短。

相似文献

2
The size of the unstirred layer as a function of the solute diffusion coefficient.
Biophys J. 1998 Sep;75(3):1403-9. doi: 10.1016/S0006-3495(98)74058-5.
3
Steady-state nonmonotonic concentration profiles in the unstirred layers of bilayer lipid membranes.
Biochim Biophys Acta. 1995 Apr 12;1235(1):57-61. doi: 10.1016/0005-2736(94)00274-s.
4
Responding phospholipid membranes--interplay between hydration and permeability.
Biophys J. 2001 Aug;81(2):1014-28. doi: 10.1016/S0006-3495(01)75759-1.
5
Solvent drag across gramicidin channels demonstrated by microelectrodes.
Biophys J. 2000 May;78(5):2426-34. doi: 10.1016/S0006-3495(00)76786-5.
6
Permeation of ammonia across bilayer lipid membranes studied by ammonium ion selective microelectrodes.
Biophys J. 1997 May;72(5):2187-95. doi: 10.1016/S0006-3495(97)78862-3.
9
Water transport across biological membranes.
FEBS Lett. 1994 Jun 6;346(1):115-22. doi: 10.1016/0014-5793(94)00470-6.
10
Coupling of solute and solvent flows in porous lipid bilayer membranes.
J Gen Physiol. 1971 Apr;57(4):479-93. doi: 10.1085/jgp.57.4.479.

引用本文的文献

1
Mechanistic insight into the initiation of spreading depolarizations: Is it really all about potassium?
J Physiol. 2025 Jun;603(11):3269-3273. doi: 10.1113/JP288809. Epub 2025 May 31.
2
Intracellular Lactate Dynamics in Glutamatergic Neurons.
bioRxiv. 2025 Jan 23:2024.02.26.582095. doi: 10.1101/2024.02.26.582095.
3
Biophysical Reviews' "Meet the Councilor Series"-a profile of Peter Pohl.
Biophys Rev. 2021 Nov 23;13(6):839-844. doi: 10.1007/s12551-021-00897-4. eCollection 2021 Dec.
4
The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux.
Chem Rev. 2021 May 12;121(9):5597-5631. doi: 10.1021/acs.chemrev.0c01137. Epub 2021 Feb 17.
5
Membrane Permeabilities of Ascorbic Acid and Ascorbate.
Biomolecules. 2018 Aug 17;8(3):73. doi: 10.3390/biom8030073.
6
Single-file transport of water through membrane channels.
Faraday Discuss. 2018 Sep 28;209(0):9-33. doi: 10.1039/c8fd00122g.
7
Design of peptide-membrane interactions to modulate single-file water transport through modified gramicidin channels.
Biophys J. 2012 Oct 17;103(8):1698-705. doi: 10.1016/j.bpj.2012.08.059. Epub 2012 Oct 16.
8
Routes of epithelial water flow: aquaporins versus cotransporters.
Biophys J. 2010 Dec 1;99(11):3647-56. doi: 10.1016/j.bpj.2010.10.021.
9
Quantitative visualization of passive transport across bilayer lipid membranes.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14277-82. doi: 10.1073/pnas.0803720105. Epub 2008 Sep 11.
10
Fast and selective ammonia transport by aquaporin-8.
J Biol Chem. 2007 Feb 23;282(8):5296-301. doi: 10.1074/jbc.M609343200. Epub 2006 Dec 21.

本文引用的文献

1
Water transport across mammalian cell membranes.
Am J Physiol. 1996 Jan;270(1 Pt 1):C12-30. doi: 10.1152/ajpcell.1996.270.1.C12.
4
Solute diffusion in lipid bilayer membranes: an atomic level study by molecular dynamics simulation.
Biochemistry. 1993 Nov 30;32(47):12624-37. doi: 10.1021/bi00210a010.
5
Determination of volume and water permeability of plated cells from measurements of light scattering.
Am J Physiol. 1993 Nov;265(5 Pt 1):C1412-23. doi: 10.1152/ajpcell.1993.265.5.C1412.
6
Water transport across biological membranes.
FEBS Lett. 1994 Jun 6;346(1):115-22. doi: 10.1016/0014-5793(94)00470-6.
8
Full analytical description of graviosmotic volume flows.
Gen Physiol Biophys. 1994 Apr;13(2):109-26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验