Daaka Y, Pitcher J A, Richardson M, Stoffel R H, Robishaw J D, Lefkowitz R J
Howard Hughes Medical Institute, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
Proc Natl Acad Sci U S A. 1997 Mar 18;94(6):2180-5. doi: 10.1073/pnas.94.6.2180.
The G protein-coupled receptor (GPCR) kinases (GRKs) phosphorylate and desensitize agonist-occupied GPCRs. GRK2-mediated receptor phosphorylation is preceded by the agonist-dependent membrane association of this enzyme. Previous in vitro studies with purified proteins have suggested that this translocation may be mediated by the recruitment of GRK2 to the plasma membrane by its interaction with the free betagamma subunits of heterotrimeric G proteins (G betagamma). Here we demonstrate that this mechanism operates in intact cells and that specificity is imparted by the selective interaction of discrete pools of G betagamma with receptors and GRKs. Treatment of Cos-7 cells transiently overexpressing GRK2 with a beta-receptor agonist promotes a 3-fold increase in plasma membrane-associated GRK2. This translocation of GRK2 is inhibited by the carboxyl terminus of GRK2, a known G betagamma sequestrant. Furthermore, in cells overexpressing both GRK2 and G beta1 gamma2, activation of lysophosphatidic acid receptors leads to the rapid and transient formation of a GRK/G betagamma complex. That G betagamma specificity exists at the level of the GPCR and the GRK is indicated by the observation that a GRK2/G betagamma complex is formed after agonist occupancy of the lysophosphatidic acid and beta-adrenergic but not thrombin receptors. In contrast to GRK2, GRK3 forms a G betagamma complex after stimulation of all three GPCRs. This G betagamma binding specificity of the GRKs is also reflected at the level of the purified proteins. Thus the GRK2 carboxyl terminus binds G beta1 and G beta2 but not G beta3, while the GRK3 fusion protein binds all three G beta isoforms. This study provides a direct demonstration of a role for G betagamma in mediating the agonist-stimulated translocation of GRK2 and GRK3 in an intact cellular system and demonstrates isoform specificity in the interaction of these components.
G蛋白偶联受体(GPCR)激酶(GRK)可使激动剂占据的GPCR磷酸化并使其脱敏。GRK2介导的受体磷酸化之前,该酶会发生激动剂依赖性的膜结合。先前对纯化蛋白进行的体外研究表明,这种易位可能是由GRK2通过与异源三聚体G蛋白(Gβγ)的游离βγ亚基相互作用而被募集到质膜所介导的。在此,我们证明了这种机制在完整细胞中起作用,并且离散的Gβγ池与受体和GRK的选择性相互作用赋予了特异性。用β受体激动剂处理瞬时过表达GRK2的Cos-7细胞,可使质膜相关的GRK2增加3倍。GRK2的这种易位受到GRK2羧基末端(一种已知的Gβγ螯合剂)的抑制。此外,在同时过表达GRK2和Gβ1γ2的细胞中,溶血磷脂酸受体的激活导致GRK / Gβγ复合物的快速瞬时形成。激动剂占据溶血磷脂酸和β肾上腺素能受体而非凝血酶受体后形成GRK2 / Gβγ复合物,这一观察结果表明Gβγ特异性存在于GPCR和GRK水平。与GRK2相反,GRK3在所有三种GPCR受到刺激后形成Gβγ复合物。GRK的这种Gβγ结合特异性在纯化蛋白水平上也有体现。因此,GRK2羧基末端结合Gβ1和Gβ2但不结合Gβ3,而GRK3融合蛋白结合所有三种Gβ同工型。本研究直接证明了Gβγ在完整细胞系统中介导激动剂刺激的GRK2和GRK3易位中的作用,并证明了这些组分相互作用中的同工型特异性。