Sadana A, Sutaria M
Chemical Engineering Department, University of Mississippi, University 88677-9740, USA.
Biophys Chem. 1997 Mar 27;65(1):29-44. doi: 10.1016/s0301-4622(96)02253-3.
The diffusion-limited binding kinetics of antigen-antibody, ligand-receptor, analyte-receptorless systems for biosensor applications is analyzed within a fractal framework. The analysis presented applies equally well to these types of systems. For example, for the binding of 2-(p-toluidiny)-naphthalene-6-sulfonic acid (2,6-TNS) to beta-cyclodextrin (ligand-receptor system) immobilized on a fiber-optic base inclusate biosensor, an increase in temperature from 4 to 30 degrees C leads to an increase in the fractal dimension, D1 and to a decrease in the binding rate coefficient, k1. For the binding of TRITC-labeled low-density proteins (LDL) directly to an optical fiber-based sensor (analyte-receptorless system), an increase in the LDL concentration from 5 to 50 micrograms ml-1 in solution leads to a decrease in the fractal dimension, D1 and to an increase in the binding rate coefficient, k1. Also, during the binding of human chorionic gonadotropin (hCG) to anti-hCG antibody immobilized on a HPLC column (antigen-antibody system), an increase in temperature from 4 to 50 degrees C leads to an increase in the fractal dimension, D1 and in the binding rate coefficient. k1. The different examples analyzed and presented together for the three different types of systems provide one means of a 'unified analysis,' and a method by which the forward binding rate coefficient, k1 may be controlled, that is, by changing the fractal dimension or 'disorder' on the surface. The analysis should assist in improving the stability, sensitivity, and response time of biosensors wherein different types of binding systems are utilized in the analysis method. More-or-less all of the treatment presented should be applicable to the above types of binding systems occurring in non-biosensor applications also. However, the single-fractal analysis is unable to describe the data over the full time course of some of the experiments.
在分形框架内分析了用于生物传感器应用的抗原 - 抗体、配体 - 受体、无受体分析物系统的扩散受限结合动力学。所呈现的分析同样适用于这些类型的系统。例如,对于固定在光纤基质包合物生物传感器上的2 - (对甲苯胺基) - 萘 - 6 - 磺酸(2,6 - TNS)与β - 环糊精(配体 - 受体系统)的结合,温度从4℃升高到30℃会导致分形维数D1增加,结合速率系数k1降低。对于异硫氰酸四甲基罗丹明(TRITC)标记的低密度蛋白(LDL)直接与基于光纤的传感器(无受体分析物系统)的结合,溶液中LDL浓度从5微克/毫升增加到50微克/毫升会导致分形维数D1降低,结合速率系数k1增加。此外,在人绒毛膜促性腺激素(hCG)与固定在高效液相色谱柱上的抗hCG抗体(抗原 - 抗体系统)的结合过程中,温度从4℃升高到50℃会导致分形维数D1和结合速率系数k1增加。针对这三种不同类型系统分析并共同呈现的不同示例提供了一种“统一分析”方法,以及一种可以控制正向结合速率系数k1的方法,即通过改变表面的分形维数或“无序度”。该分析应有助于提高生物传感器的稳定性、灵敏度和响应时间,其中在分析方法中使用了不同类型的结合系统。几乎本文所呈现的所有处理方法也应适用于非生物传感器应用中出现的上述类型的结合系统。然而,单分形分析无法描述某些实验整个时间过程的数据。