Sulkowski E
Roswell Park Cancer Institute, Department of Molecular and Cellular Biology, Buffalo, NY 14263, USA.
J Mol Recognit. 1996 Sep-Dec;9(5-6):389-93. doi: 10.1002/(sici)1099-1352(199634/12)9:5/6<389::aid-jmr271>3.0.co;2-3.
Complexation of imidazole (Im) with an iminodiacetate (IDA) metal chelate [IDA-M(II)] ligand of chelating gel results in an acidification of the mobile phase. The scope of the action of this IDA-M(II)Im 'proton pump' in IMAC is determined by: (a) IDA-M(II) density of the gel; (b) concentration of applied Im; and (c) the buffering capacity of the mobile phase. Application of Im onto a metal chelate column in a gradient rather than in a stepwise manner, mitigates the proton pump's action, as it does an increase of buffer concentration in the mobile phase. However, only an antecedent conversion of the metal chelate gel, IDA-M(II), to its Im derivative, IDA-M(II) Im, can effectively circumscribe the action of the proton pump. The same holds true, as anticipated, when another chelating ligand (nitrilotriacetate) is used.
咪唑(Im)与螯合凝胶的亚氨基二乙酸(IDA)金属螯合物[IDA-M(II)]配体络合会导致流动相酸化。这种IDA-M(II)Im“质子泵”在离子交换金属亲和色谱(IMAC)中的作用范围取决于:(a)凝胶的IDA-M(II)密度;(b)施加的Im浓度;以及(c)流动相的缓冲能力。以梯度而非逐步方式将Im应用于金属螯合柱,可减轻质子泵的作用,流动相中缓冲液浓度的增加也是如此。然而,只有先将金属螯合凝胶IDA-M(II)转化为其Im衍生物IDA-M(II)Im,才能有效限制质子泵的作用。正如预期的那样,当使用另一种螯合配体(次氮基三乙酸)时也是如此。