Mark M, Kastner P, Ghyselinck N B, Krezel W, Dupé V, Chambon P
Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP/Collège de France, Illkirch, France.
C R Seances Soc Biol Fil. 1997;191(1):77-90.
Two families of nuclear receptors for retinoic acid (RA) have been characterized. Members of the RAR family (types alpha, beta and gamma and their isoforms alpha 1, alpha 2, beta 1 to beta 4, and gamma 1 and gamma 2) are activated by most physiologically occurring retinoids (all-trans RA, 9-cis RA, 4oxo RA and 3,4 dihyroRA). In contrast, members of the RXR family (types alpha, beta and gamma and their isoforms) are activated by 9cis-RA only. In addition to the multiplicity of receptors, the complexity of retinoid signalling is further increased by the fact that, at least in vitro, RARs bind to their cognate response elements as heterodimers with RXRs. Moreover, RXRs can also bind, in vitro, to some DNA elements as homodimers, and are heterodimeric partners for other nuclear receptors, including TRs, VDR, PPARs and a number of orphan nuclear receptors. To evaluate the functions of the different RARs and RXRs types and isoforms, we have generated null mutant mice by targeted gene disruption in ES cells. As to the functions of RARs, we found that RAR alpha 1 and RAR gamma 2 null mutant mice are apparently normal. Mice deficient in RAR alpha or RAR gamma (i.e., all alpha or gamma isoforms disrupted) show aspects of the post-natal vitamin A deficiency (VAD) syndrome which can be cured or prevented by RA, including post-natal lethality, poor weight gain and male sterility. RAR beta 2 (and RAR beta) null mutants display a retrolenticular membrane which represents the most frequent defect of the fetal VAD syndrome. That these abnormalities were restricted to a small subset of the tissues normally expressing these receptors suggested that some degree of functional redundancy should exist in the RAR family. To test this hypothesis we then generated RAR double null mutants. RAR alpha beta, RAR alpha gamma and RAR beta gamma compound mutants exhibit all the malformations of the fetal VAD syndrome, thus demonstrating that RA is the vitamin A derivative which plays a crucial role at many different stages and in different structures during organogenesis. Interestingly, almost all the structures derived from mesenchymal neural crests cells (NCC) are affected in RAR compound mutants. As to the functions of RXRs, RXR gamma null mutants are viable, fertile and morphologically normal. In contrast, RXR alpha null fetuses display a thin ventricular wall and die in utero from cardiac failure. A myocardial hypoplasia has also been observed in some RAR compound mutants as well as in VAD fetuses. Thus, RXR alpha seems to act as an inhibitor of ventricular cardiocyte differentiation and/or as a positive regulator of their proliferation, and these functions might involve heterodimerization with RARs and activation by RA. RXR beta null mutants are viable but the males are sterile, most probably because of an abnormal lipid metabolism in the Sertoli cells. New abnormalities, absent in RXR alpha mutants, are generated in RXR alpha/RAR (alpha, beta or gamma) compound mutants. All these abnormalities are also seen in RAR double mutants as well as in VAD fetuses. In contrast, such manifestations of synergism are not observed between the RXR beta or RXR gamma and the RAR (alpha, beta or gamma) null mutations. These data strongly support the conclusion that RXR alpha/RAR heterodimers represent the main functional units of the RA signalling pathway during embryonic development. Moreover, since RXR gamma-/-/RXR beta-/-/RXR alpha +/-mutants are viable, a single allele of RXR alpha can perform most of the developmental RXR functions.
现已鉴定出两类视黄酸(RA)核受体。RAR家族成员(α、β和γ型及其亚型α1、α2、β1至β4以及γ1和γ2)可被大多数生理状态下存在的类视黄醇激活(全反式RA、9-顺式RA、4-氧代RA和3,4-二氢RA)。相比之下,RXR家族成员(α、β和γ型及其亚型)仅被9-顺式RA激活。除了受体的多样性外,类视黄醇信号传导的复杂性还因以下事实进一步增加:至少在体外,RARs作为与RXRs的异二聚体与其同源反应元件结合。此外,RXRs在体外也可作为同二聚体与一些DNA元件结合,并且是包括TRs、VDR、PPARs和许多孤儿核受体在内的其他核受体的异二聚体伙伴。为了评估不同类型和亚型的RARs和RXRs的功能,我们通过在胚胎干细胞中进行靶向基因敲除产生了基因敲除突变小鼠。关于RARs的功能,我们发现RARα1和RARγ2基因敲除突变小鼠明显正常。缺乏RARα或RARγ(即所有α或γ亚型均被破坏)的小鼠表现出产后维生素A缺乏(VAD)综合征的一些症状,这些症状可通过RA治愈或预防,包括产后致死、体重增加缓慢和雄性不育。RARβ2(和RARβ)基因敲除突变体表现出晶状体后膜,这是胎儿VAD综合征最常见的缺陷。这些异常仅限于正常表达这些受体的一小部分组织,这表明RAR家族中应存在一定程度的功能冗余。为了验证这一假设,我们随后产生了RAR双基因敲除突变体。RARαβ、RARαγ和RARβγ复合突变体表现出胎儿VAD综合征的所有畸形,从而证明RA是在器官发生过程中许多不同阶段和不同结构中起关键作用的维生素A衍生物。有趣的是,几乎所有源自间充质神经嵴细胞(NCC)的结构在RAR复合突变体中均受到影响。关于RXRs的功能,RXRγ基因敲除突变体是存活的、可育的且形态正常。相比之下,RXRα基因敲除的胎儿表现出心室壁变薄并在子宫内死于心力衰竭。在一些RAR复合突变体以及VAD胎儿中也观察到心肌发育不全。因此,RXRα似乎作为心室心肌细胞分化的抑制剂和/或其增殖的正调节因子发挥作用,并且这些功能可能涉及与RARs的异二聚化以及被RA激活。RXRβ基因敲除突变体是存活的,但雄性不育,很可能是由于支持细胞中脂质代谢异常。在RXRα/RAR(α、β或γ)复合突变体中产生了RXRα突变体中不存在的新异常。所有这些异常在RAR双突变体以及VAD胎儿中也可见。相比之下,在RXRβ或RXRγ与RAR(α、β或γ)基因敲除突变之间未观察到这种协同作用的表现。这些数据有力地支持了以下结论:RXRα/RAR异二聚体代表胚胎发育过程中RA信号通路的主要功能单位。此外,由于RXRγ-/-/RXRβ-/-/RXRα+/-突变体是存活的,RXRα的单个等位基因可以执行大多数发育过程中的RXR功能。