Rubera I, Tauc M, Michel F, Poujeol C, Poujeol P
UMR CNRS 6548, université de Nice-Sophia-Antipolis, Nice, France.
C R Acad Sci III. 1997 Mar;320(3):223-32. doi: 10.1016/s0764-4469(97)86930-2.
Ionic Cl- currents induced by cell swelling and forskolin were studied in primary cultures of rabbit distal convoluted tubule (DCTb) by the whole-cell patch clamp technique. We identified a Cl- conductance activated by cell swelling with an hyperosmotic pipette solution. The initial current exhibited an outwardly rectifying 1-V relationship, whereas steady state current showed strong decay at depolarized membrane potentials. The ion selectivity was I- > Br- > Cl- > > glutamate. The forskolin-activated Cl- conductance demonstrated a linear I-V relationship and its ion selectivity was Br- > Cl- > I- > glutamate. This last conductance could be related to the CFTR (cystic fibrosis transmembrane conductance regulator) previously identified in these cells. NPPB inhibited both Cl- currents, and DIDS inhibited only the swelling-activated Cl- current. Forskolin had no effect on the activation of the swelling-activated Cl- current. In DCTb cells which exhibited swelling-activated Cl- currents subsequently inhibited by DIDS, forskolin could activate CFTR related Cl- currents. In the continuous presence of I- which inhibited CFTR conductance, forskolin did not modify the swelling-activated current. The results suggest that both Cl- conductances could be co-expressed in the same DCTb cell and that CFTR did not modulate the swelling-activated conductance.