Suppr超能文献

一种将II类主要组织相容性复合体结合基序转化为定量预测模型的迭代算法。

An iterative algorithm for converting a class II MHC binding motif into a quantitative predictive model.

作者信息

Mallios R R

机构信息

Medical Information Resources, University of California, San Francisco, Fresno 93703, USA.

出版信息

Comput Appl Biosci. 1997 Jun;13(3):211-5. doi: 10.1093/bioinformatics/13.3.211.

Abstract

Biochemists and molecular biologists have suggested motifs for characterizing the binding of peptide fragments and class II major histocompatibility complex (MHC) molecules based on laboratory results and crystal structures. The iterative algorithm presented here converts a suggested motif into a quantitative data-based model. The database accessed consists of peptide fragments known to bind or not bind to class II MHC molecules of particular haplotypes. Stepwise discriminant analysis is utilized to increase or decrease motif coefficients until the resulting motif classifies all binders and non-binders correctly. Stepwise discriminant analysis is a standard multivariate statistical procedure and is available in comprehensive commercial statistical packages. Program 7M of BMDP Statistical Software was used in this study.

摘要

生物化学家和分子生物学家已根据实验室结果和晶体结构提出了用于表征肽片段与II类主要组织相容性复合体(MHC)分子结合的基序。本文提出的迭代算法将建议的基序转换为基于定量数据的模型。所访问的数据库包含已知与特定单倍型的II类MHC分子结合或不结合的肽片段。利用逐步判别分析来增加或减少基序系数,直到所得基序能正确地对所有结合物和非结合物进行分类。逐步判别分析是一种标准的多元统计程序,在综合商业统计软件包中可用。本研究使用了BMDP统计软件的程序7M。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验