Suppr超能文献

Functional interactions between spinal cord grafts suggest asymmetries dictated by graft maturity.

作者信息

Trok K, Palmer M R, Freund R K, Olson L

机构信息

Department of Neuroscience, Karolinska Institute, Stockholm, Sweden.

出版信息

Exp Neurol. 1997 May;145(1):268-77. doi: 10.1006/exnr.1997.6453.

Abstract

Fetal spinal cord tissue grafts have been advocated as a possible repair strategy for spinal cord injury. In the present study, we used intraocular spinal cord grafts to model the interactions which may occur between fetal and adult spinal cord after making such a graft and to study to which extent functional connections can be expected to occur between the host and graft tissue. We first grafted fetal spinal cord to the anterior chamber of the eye where it was allowed to mature. A second piece of fetal spinal cord was then sequentially grafted in contact with the first graft. Electrophysiological recordings made from the older graft while electrically stimulating the younger graft provided evidence for an excitatory innervation from the younger spinal cord graft to the mature spinal cord which appeared to be glutamatergic. However, we only rarely found excitatory inputs from the first, mature spinal cord graft to the younger graft. Fiber connections between the two spinal cord grafts were verified by retrograde tracing and neurofilament immunohistochemistry. In no case was a trophic influence on graft volume observed between spinal cord grafts regardless of whether the transplantations were performed sequentially or at the same time. Even the introduction of a second graft to immature spinal cord tissue was ineffective. In contrast, we found a marked trophic, neuron-rescuing effect of spinal cord grafts upon cografts of fetal dorsal root ganglia. This latter observation is consistent with the hypothesis that spinal cord tissue can exert a trophic effect on developing sensory ganglia and demonstrates that many sensory neurons can survive in the presence of a central target and in the absence of the appropriate peripheral target. These intraocular experiments predict that fetal spinal cord grafted to the injured adult spinal cord may develop effective excitatory inputs with the host, while host-to-graft inputs may develop to a considerably smaller extent. Our results also suggest that the adult spinal cord does not exert marked trophic effects on growth of fetal spinal cord, while it does exert a trophic influence on central projections of dorsal root ganglia.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验