Becker M P, Yang I, Lange K
Department of Biostatistics, University of Michigan, Ann Arbor 48109-2029, USA.
Stat Methods Med Res. 1997 Mar;6(1):38-54. doi: 10.1177/096228029700600104.
Most problems in computational statistics involve optimization of an objective function such as a loglikelihood, a sum of squares, or a log posterior function. The EM algorithm is one of the most effective algorithms for maximization because it iteratively transfers maximization from a complex function to a simple, surrogate function. This theoretical perspective clarifies the operation of the EM algorithm and suggests novel generalizations. Besides simplifying maximization, optimization transfer usually leads to highly stable algorithms with well-understood local and global convergence properties. Although convergence can be excruciatingly slow, various devices exist for accelerating it. Beginning with the EM algorithm, we review in this paper several optimization transfer algorithms of substantial utility in medical statistics.
计算统计学中的大多数问题都涉及目标函数的优化,例如对数似然函数、平方和函数或对数后验函数。期望最大化(EM)算法是最有效的最大化算法之一,因为它通过迭代将最大化从一个复杂函数转移到一个简单的替代函数。这种理论观点阐明了EM算法的操作,并提出了新的推广。除了简化最大化之外,优化转移通常会产生具有易于理解的局部和全局收敛特性的高度稳定的算法。尽管收敛可能极其缓慢,但存在各种加速收敛的方法。从EM算法开始,我们在本文中回顾了几种在医学统计学中具有重要实用价值的优化转移算法。