Paul B D, Ramesh V, Nagaraja V
Centre for Genetic Engineering, Indian Institute of Science, Bangalore.
Gene. 1997 Apr 29;190(1):11-5. doi: 10.1016/s0378-1119(96)00783-4.
We had earlier overproduced the transcription activator protein C of bacteriophage Mu in a phage-T7 expression system. Although we achieved a high level of overproduction, the expression was not consistent. This could be due to the leaky expression of T7 RNA polymerase in the uninduced state. Introduction of pLysS, a plasmid encoding T7 lysozyme, a natural inhibitor of T7 RNA polymerase, resulted in consistent, but extremely low production of the C protein. To overcome this problem, we have devised an artificial regulatory circuit to obtain stabilised, consistent overproduction of C protein. The C-binding site was cloned downstream from the transcription start point of T7 lys. Upon induction, the C protein produced binds to its site with a very high affinity, possibly acting as a transcriptional roadblock for lys. This would overcome the inhibitory effect of T7 lysozyme on T7 RNA polymerase.