Pearlstone J R, Sykes B D, Smillie L B
Department of Biochemistry, University of Alberta, Edmonton, Canada.
Biochemistry. 1997 Jun 17;36(24):7601-6. doi: 10.1021/bi970200w.
The actomyosin ATPase inhibitory protein troponin I (TnI) plays a central regulatory role in skeletal and cardiac muscle contraction and relaxation through its calcium-dependent interactions with troponin C (TnC) and actin. Previously we have demonstrated the utility of F29W and F105W mutants of TnC for measurement of binding affinities of inhibitory peptide TnI(96-116) to its regulatory N and structural C domains, both in isolation and in the intact TnC molecule [Pearlstone, J. R. & Smillie, L. B. (1995) Biochemistry 34, 6932-6940]. This approach is now extended to fragment TnI(96-148). Curve-fitting analyses of fluorescence changes induced in the intact TnC mutants and the isolated N and C domains by increasing [TnI(96-148)] have permitted the assignments of K(D) values (designated K(D,N) and K(D,C)) to the interaction of TnI(96-148) with the N and C domains, respectively, of intact TnC. Taken together with the previous data for TnI(96-116) binding, it can be concluded that, within TnI(96-148), residues 96-116 are primarily responsible for binding to C domain of intact TnC and residues 117-148 to its N domain. Inspection of the available mammalian and avian skeletal muscle TnI amino acid sequences reveals a previously unrecognized conserved motif repeated 3-fold, once in the inhibitory peptide region (approximately residues 101-114; designated alpha) and twice more in the region of residues approximately 121-132 (beta) and approximately 135-146 (gamma). The number and distribution of these motifs have important structural implications for the TnI x C complex. In the beta motif of cardiac TnI, as compared with skeletal, several changes in charged amino acids are suggested as candidates responsible for the greater sensitivity of cardiac Ca2+-regulated actomyosin to acidic pH as in ischemia.
肌动球蛋白ATP酶抑制蛋白肌钙蛋白I(TnI)通过其与肌钙蛋白C(TnC)和肌动蛋白的钙依赖性相互作用,在骨骼肌和心肌的收缩与舒张过程中发挥核心调节作用。此前我们已证明,TnC的F29W和F105W突变体可用于测量抑制性肽TnI(96 - 116)与其调节性N结构域和结构性C结构域的结合亲和力,无论是在分离状态还是在完整的TnC分子中[Pearlstone, J. R. & Smillie, L. B. (1995) Biochemistry 34, 6932 - 6940]。现在这种方法扩展到了片段TnI(96 - 148)。通过增加[TnI(96 - 148)]对完整TnC突变体以及分离的N和C结构域诱导的荧光变化进行曲线拟合分析,分别确定了TnI(96 - 148)与完整TnC的N和C结构域相互作用的K(D)值(分别称为K(D,N)和K(D,C))。结合之前关于TnI(96 - 116)结合的数据,可以得出结论,在TnI(96 - 148)内,96 - 116位残基主要负责与完整TnC的C结构域结合,117 - 148位残基主要负责与完整TnC的N结构域结合。对现有的哺乳动物和鸟类骨骼肌TnI氨基酸序列进行检查发现,有一个以前未被识别的保守基序重复出现3次,一次在抑制性肽区域(约101 - 114位残基;称为α),另外两次在约121 - 132位残基区域(β)和约135 - 146位残基区域(γ)。这些基序的数量和分布对TnI x C复合物具有重要的结构意义。与骨骼肌相比,心脏TnI的β基序中,一些带电荷氨基酸的变化被认为是导致心脏Ca2 +调节的肌动球蛋白在缺血时对酸性pH更敏感的原因。