Cann A D, Kohanski R A
Department of Biochemistry, The Mount Sinai School of Medicine, New York, New York 10029, USA.
Biochemistry. 1997 Jun 24;36(25):7681-9. doi: 10.1021/bi970170x.
Receptor tyrosine kinases undergo ligand-induced dimerization that promotes kinase domain trans-autophosphorylation. However, the kinase domains of the insulin receptor are effectively dimerized because of the covalent alpha2beta2 holomeric structure. This fact has made it difficult to determine the molecular mechanism of intraholomeric autophosphorylation, but there is evidence for both cis- and trans-autophosphorylation in the absence and presence of insulin. Here, using the cytoplasmic kinase domain (CKD) of the human insulin receptor, we demonstrate that autophosphorylation in the juxtamembrane (JM) subdomain follows a cis-reaction pathway. JM autophosphorylation was independent of CKD concentration over the range 6 nM-3 microM and was characterized kinetically: Half-saturation (K(ATP)) was observed at 75 microM ATP [5 mM Mn(CH3CO2)2] with a maximal rate of 0.24 mol of PO4 (mol of CKD)(-1) min(-1). Pairwise substitutions of Phe for Tyr in the other two autophosphorylation subdomains, generated by site-directed mutagenesis, altered the kinetics of JM autophosphorylation but did not change the pathway from a cis-reaction. Tyr(1328,1334) to Phe (in the carboxy-terminal subdomain) yielded <2-fold increase in the efficiency of JM autophosphorylation, whereas Tyr(1162,1163) to Phe (in the activation loop subdomain) yielded approximately 38-fold increased efficiency of JM autophosphorylation, due predominantly to a 23-fold decreased K(ATP). These findings demonstrate basal state binding of ATP to the CKD leading to cis-autophosphorylation and novel basal state regulatory interactions among the subdomains of the insulin receptor kinase. On the basis of these results and the crystal structure of the conserved catalytic core of this kinase [Hubbard, S. R., et al. (1994) Nature 372, 746], a model is proposed which reconciles the JM cis-reaction and the activation loop cis-inhibition/trans-reaction with the complex kinetics of insulin receptor autophosphorylation [Kohanski, R. A. (1993) Biochemistry 32, 5766].
受体酪氨酸激酶经历配体诱导的二聚化,从而促进激酶结构域的反式自磷酸化。然而,胰岛素受体的激酶结构域由于共价的α2β2全聚体结构而有效地二聚化。这一事实使得确定全聚体内自磷酸化的分子机制变得困难,但有证据表明在有无胰岛素的情况下都存在顺式和反式自磷酸化。在此,我们使用人胰岛素受体的细胞质激酶结构域(CKD),证明近膜(JM)亚结构域中的自磷酸化遵循顺式反应途径。JM自磷酸化在6 nM至3 μM的CKD浓度范围内与CKD浓度无关,并通过动力学进行表征:在75 μM ATP [5 mM乙酸锰(II)]下观察到半饱和(K(ATP)),最大速率为0.24 mol PO4(mol CKD)-1 min-1。通过定点诱变在其他两个自磷酸化亚结构域中用苯丙氨酸对酪氨酸进行成对替换,改变了JM自磷酸化的动力学,但没有改变顺式反应途径。酪氨酸(1328,1334)替换为苯丙氨酸(在羧基末端亚结构域中)使JM自磷酸化效率提高不到2倍,而酪氨酸(1162,1163)替换为苯丙氨酸(在激活环亚结构域中)使JM自磷酸化效率提高约38倍,这主要是由于K(ATP)降低了23倍。这些发现表明ATP与CKD的基础状态结合导致顺式自磷酸化以及胰岛素受体激酶亚结构域之间新的基础状态调节相互作用。基于这些结果以及该激酶保守催化核心的晶体结构[哈伯德,S.R.等人(1994年)《自然》372, 746],提出了一个模型,该模型将JM顺式反应和激活环顺式抑制/反式反应与胰岛素受体自磷酸化的复杂动力学相协调[科汉斯基,R.A.(1993年)《生物化学》32, 5766]。