Schaller R A, Mohsen A W, Vockley J, Thorpe C
Department of Chemistry and Biochemistry, University of Delaware, Newark 19716, USA.
Biochemistry. 1997 Jun 24;36(25):7761-8. doi: 10.1021/bi970095q.
The catalytically essential glutamate base in the acyl-CoA dehydrogenase family is found either on the loop between J and K helices (e.g., in short-chain, medium-chain, and glutaryl-CoA dehydrogenases) or on the G helix (long-chain and isovaleryl-CoA dehydrogenases). While active-site bases at either position are functionally equivalent with respect to alpha-proton abstraction, reactions that require removal of a gamma-proton show marked differences between the two enzyme classes. Thus short-chain, medium-chain, and glutaryl-CoA dehydrogenase are rapidly inactivated by 2-pentynoyl-CoA with abstraction of a gamma-proton, whereas isovaleryl-CoA dehydrogenase is not significantly inhibited. This resistance is not due to weak binding: the complex between isovaleryl-CoA dehydrogenase and 2-pentynoyl-CoA shows a Kd of 1.8 microM at pH 7.6. Migration of the catalytic base to the loop between J and K helices (using the Glu254Gly/Ala375Glu double mutant) makes isovaleryl-CoA dehydrogenase sensitive to irreversible inhibition by 2-pentynoyl-CoA. Molecular modeling suggests that this mutation brings the catalytic base close enough to abstract a gamma-proton from the bound inhibitor. Experiments with two mechanism-based inactivators that target the FAD of the medium- and short-chain acyl-CoA dehydrogenases support this conclusion. 3-Methyl-3-butenoyl-CoA requires activation by alpha-proton abstraction and rapidly yields a reduced flavin adduct with wild-type isovaleryl-CoA dehydrogenase. In contrast, the isomeric 3-methyl-2-butenoyl-CoA is inert toward this enzyme because it cannot be activated by gamma-proton abstraction. Molecular modeling supports these observations. This unusual selectivity toward mechanism-based inactivators provides additional discrimination between members of the acyl-CoA dehydrogenase family.