Chiang R C, Cavicchioli R, Gunsalus R P
Department of Microbiology and Molecular Genetics, and the Molecular Biology Institute, University of California, Los Angeles 90095-1489, USA.
Mol Microbiol. 1997 Jun;24(5):1049-60. doi: 10.1046/j.1365-2958.1997.4131779.x.
The Escherichia coli NarX, NarQ, NarL and NarP proteins comprise a two-component regulatory system that controls the expression of many anaerobic electron-transport and fermentation-related genes in response to nitrate and nitrite. Either of the two sensor-transmitter proteins, NarX and NarQ, can activate the response-regulator proteins, NarL and NarP, which in turn are able to bind at their respective DNA regulatory sites to modulate gene expression. NarX contains a conserved 17 amino acid sequence, designated the 'P-box' element, that is essential for nitrate sensing. In this study we characterize narQ mutants that also confer altered nitrate control of NarL-dependent nitrate reductase (narGHJI) and fumarate reductase (frdABCD) gene expression. While some narQ mutations cause the constitutive activation or repression of reporter-gene expression even when the cells are grown in the absence of the nitrate signal (i.e. a 'locked-on' phenotype), other mutations abolish nitrate-dependent control (i.e. a 'locked-off' phenotype). Interestingly the narQ (A42-->T) and narQ (R50-->Q) mutations along with the analogous narX18 (A46-->T) and narX902 (R54-->E) mutations also confer a 'locked-on' or a 'locked-off' phenotype in response to nitrite, the second environmental signal detected by NarQ and NarX. Furthermore, these narQ and narX mutations also affect NarP-dependent gene regulation of nitrite reductase (nrfABCDEFG) and aeg-46.5 gene expression in response to nitrite. We therefore propose that the NarQ sensor-transmitter protein also detects nitrate and nitrite in the periplasmic space via its periplasmic domain. A signal transduction model, which we previously proposed for NarX, is now extended to NarQ, in which a nitrate- or nitrite-detection event in the periplasmic region of the cell is followed by a signal transduction event through the inner membrane to the cytoplasmic domain of NarQ and NarX proteins to modulate their protein kinase/phosphatase activities.
大肠杆菌的NarX、NarQ、NarL和NarP蛋白构成了一个双组分调节系统,该系统可响应硝酸盐和亚硝酸盐,控制许多厌氧电子传递和发酵相关基因的表达。两种传感-传递蛋白NarX和NarQ中的任何一种都能激活响应调节蛋白NarL和NarP,而NarL和NarP反过来又能够结合在各自的DNA调节位点上,以调节基因表达。NarX包含一个保守的17个氨基酸序列,称为“P盒”元件,这对于硝酸盐传感至关重要。在本研究中,我们对narQ突变体进行了表征,这些突变体也会改变对NarL依赖性硝酸盐还原酶(narGHJI)和延胡索酸还原酶(frdABCD)基因表达的硝酸盐控制。虽然一些narQ突变即使在细胞于无硝酸盐信号的情况下生长时(即“锁定开启”表型)也会导致报告基因表达的组成型激活或抑制,但其他突变则消除了硝酸盐依赖性控制(即“锁定关闭”表型)。有趣的是,narQ(A42→T)和narQ(R50→Q)突变以及类似的narX18(A46→T)和narX902(R54→E)突变在响应亚硝酸盐时也会呈现“锁定开启”或“锁定关闭”表型,亚硝酸盐是NarQ和NarX检测到的第二种环境信号。此外,这些narQ和narX突变还会影响亚硝酸盐还原酶(nrfABCDEFG)和aeg-46.5基因表达对亚硝酸盐响应的NarP依赖性基因调控。因此,我们提出NarQ传感-传递蛋白也通过其周质结构域在周质空间中检测硝酸盐和亚硝酸盐。我们之前为NarX提出的信号转导模型现在扩展到了NarQ,在该模型中,细胞周质区域中的硝酸盐或亚硝酸盐检测事件之后是一个信号转导事件,该事件通过内膜传递到NarQ和NarX蛋白的细胞质结构域,以调节它们的蛋白激酶/磷酸酶活性。