Chapman C R, Donaldson G W, Jacobson R C, Hautman B
Pain and Toxicity Research Program, Division of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington 98104, USA.
Pain. 1997 Jul;71(3):213-23. doi: 10.1016/s0304-3959(97)03355-1.
The distinctive features of individual patients, here termed individual differences, are inescapable aspects of day-to-day patient pain management, but classically designed research studies ignore such differences. This paper introduces statistical pattern visualization methodology for the study of complex individual differences in clinical settings. We demonstrate the application of such methods in patients undergoing bone marrow transplantation (BMT) and suffering severe oral mucositis as a consequence of the aggressive BMT preparative regimen. Oral mucositis produces severe pain and patients often require parenteral opioid medication for several weeks. Unfortunately, the opioid can cause side-effects that limit drug use for pain control. Patients differ in severity and duration of oral mucositis, analgesic response to opioids, and side-effects. We identified and classified individual differences in patterns of drug use, pain control and side-effects in 33 BMT patients who received opioid drug via patient-controlled analgesia (PCA) systems for 7 days or more. These systems allowed bolus dosing and also provided a basic level of analgesic protection through continuous drug infusion. Continuous infusion levels increased or decreased in response to patient bolus self-administration. We employed statistical smoothing (moving average) techniques to remove random variation from the individual data sets and created three-way (trivariate) plots of change over time in drug use, pain and an opioid side-effect (impairment of concentration). The patterns apparent in these plots indicated that 24.2% of patients used PCA optimally (increases in drug use associated with reductions in pain and little or no side-effect), an additional 30.3% manifested a potentially optimal pattern limited by side-effect that worsened with dosing, and 36.4% used PCA suboptimally (modest pain control plus side-effects). In addition, for each subject we created a summary measure for the simultaneous change in three variables: the distance of each day's trivariate score from the origin of a three dimensional plot. This summary measure correlated significantly with the changing severity of patients' oral mucositis over time (r = 0.502). This study demonstrates how interactive graphic techniques can provide a basis for examining changes over time among multiple, correlated variables associated with a single individual. It illustrates the application of such techniques and demonstrates that individual subject data sets merit examination in cases where clinical data reflect human performance.
个体患者的独特特征,这里称为个体差异,是日常患者疼痛管理中不可避免的方面,但传统设计的研究忽略了这些差异。本文介绍了用于研究临床环境中复杂个体差异的统计模式可视化方法。我们展示了这些方法在接受骨髓移植(BMT)并因激进的BMT预处理方案而患有严重口腔黏膜炎的患者中的应用。口腔黏膜炎会产生剧烈疼痛,患者通常需要数周的胃肠外阿片类药物治疗。不幸的是,阿片类药物会引起副作用,限制其用于疼痛控制。患者在口腔黏膜炎的严重程度和持续时间、对阿片类药物的镇痛反应以及副作用方面存在差异。我们对33名通过患者自控镇痛(PCA)系统接受阿片类药物治疗7天或更长时间的BMT患者的药物使用模式、疼痛控制和副作用方面的个体差异进行了识别和分类。这些系统允许推注给药,并通过持续药物输注提供基本水平的镇痛保护。持续输注水平根据患者的推注自我给药而增加或减少。我们采用统计平滑(移动平均)技术从个体数据集中去除随机变化,并创建了药物使用、疼痛和一种阿片类药物副作用(注意力受损)随时间变化的三维(三变量)图。这些图中明显的模式表明,24.2%的患者最佳地使用了PCA(药物使用增加与疼痛减轻以及很少或没有副作用相关),另外30.3%表现出一种潜在的最佳模式,但受到副作用的限制,副作用会随着给药而恶化,36.4%的患者使用PCA的效果欠佳(疼痛控制一般且有副作用)。此外,对于每个受试者,我们为三个变量的同时变化创建了一个汇总指标:每天的三变量得分与三维图原点的距离。这个汇总指标与患者口腔黏膜炎随时间变化的严重程度显著相关(r = 0.502)。这项研究展示了交互式图形技术如何为检查与单个个体相关的多个相关变量随时间的变化提供基础。它说明了此类技术的应用,并表明在临床数据反映人类表现的情况下,个体受试者数据集值得研究。